Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion | |
# and https://github.com/hojonathanho/diffusion | |
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
from diffusers.utils import BaseOutput, deprecate | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM | |
class DDIMSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's `step` function output. | |
Args: | |
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.Tensor | |
pred_original_sample: Optional[torch.Tensor] = None | |
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
def betas_for_alpha_bar( | |
num_diffusion_timesteps, | |
max_beta=0.999, | |
alpha_transform_type="cosine", | |
): | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
(1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps (`int`): the number of betas to produce. | |
max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
Choose from `cosine` or `exp` | |
Returns: | |
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
""" | |
if alpha_transform_type == "cosine": | |
def alpha_bar_fn(t): | |
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
elif alpha_transform_type == "exp": | |
def alpha_bar_fn(t): | |
return math.exp(t * -12.0) | |
else: | |
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
return torch.tensor(betas, dtype=torch.float32) | |
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr | |
def rescale_zero_terminal_snr(betas): | |
""" | |
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) | |
Args: | |
betas (`torch.Tensor`): | |
the betas that the scheduler is being initialized with. | |
Returns: | |
`torch.Tensor`: rescaled betas with zero terminal SNR | |
""" | |
# Convert betas to alphas_bar_sqrt | |
alphas = 1.0 - betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
alphas_bar_sqrt = alphas_cumprod.sqrt() | |
# Store old values. | |
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | |
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() | |
# Shift so the last timestep is zero. | |
alphas_bar_sqrt -= alphas_bar_sqrt_T | |
# Scale so the first timestep is back to the old value. | |
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
# Convert alphas_bar_sqrt to betas | |
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt | |
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod | |
alphas = torch.cat([alphas_bar[0:1], alphas]) | |
betas = 1 - alphas | |
return betas | |
class DDIMInverseScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
`DDIMInverseScheduler` is the reverse scheduler of [`DDIMScheduler`]. | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
beta_start (`float`, defaults to 0.0001): | |
The starting `beta` value of inference. | |
beta_end (`float`, defaults to 0.02): | |
The final `beta` value. | |
beta_schedule (`str`, defaults to `"linear"`): | |
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
trained_betas (`np.ndarray`, *optional*): | |
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | |
clip_sample (`bool`, defaults to `True`): | |
Clip the predicted sample for numerical stability. | |
clip_sample_range (`float`, defaults to 1.0): | |
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. | |
set_alpha_to_one (`bool`, defaults to `True`): | |
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step | |
there is no previous alpha. When this option is `True` the previous alpha product is fixed to 0, otherwise | |
it uses the alpha value at step `num_train_timesteps - 1`. | |
steps_offset (`int`, defaults to 0): | |
An offset added to the inference steps, as required by some model families. | |
prediction_type (`str`, defaults to `epsilon`, *optional*): | |
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
Video](https://imagen.research.google/video/paper.pdf) paper). | |
timestep_spacing (`str`, defaults to `"leading"`): | |
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
rescale_betas_zero_snr (`bool`, defaults to `False`): | |
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and | |
dark samples instead of limiting it to samples with medium brightness. Loosely related to | |
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). | |
""" | |
order = 1 | |
ignore_for_config = ["kwargs"] | |
_deprecated_kwargs = ["set_alpha_to_zero"] | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | |
clip_sample: bool = True, | |
set_alpha_to_one: bool = True, | |
steps_offset: int = 0, | |
prediction_type: str = "epsilon", | |
clip_sample_range: float = 1.0, | |
timestep_spacing: str = "leading", | |
rescale_betas_zero_snr: bool = False, | |
**kwargs, | |
): | |
if kwargs.get("set_alpha_to_zero", None) is not None: | |
deprecation_message = ( | |
"The `set_alpha_to_zero` argument is deprecated. Please use `set_alpha_to_one` instead." | |
) | |
deprecate("set_alpha_to_zero", "1.0.0", deprecation_message, standard_warn=False) | |
set_alpha_to_one = kwargs["set_alpha_to_zero"] | |
if trained_betas is not None: | |
self.betas = torch.tensor(trained_betas, dtype=torch.float32) | |
elif beta_schedule == "linear": | |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | |
elif beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
self.betas = betas_for_alpha_bar(num_train_timesteps) | |
else: | |
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | |
# Rescale for zero SNR | |
if rescale_betas_zero_snr: | |
self.betas = rescale_zero_terminal_snr(self.betas) | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | |
# At every step in inverted ddim, we are looking into the next alphas_cumprod | |
# For the initial step, there is no current alphas_cumprod, and the index is out of bounds | |
# `set_alpha_to_one` decides whether we set this parameter simply to one | |
# in this case, self.step() just output the predicted noise | |
# or whether we use the initial alpha used in training the diffusion model. | |
self.initial_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# setable values | |
self.num_inference_steps = None | |
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps).copy().astype(np.int64)) | |
# Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input | |
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.Tensor`): | |
The input sample. | |
timestep (`int`, *optional*): | |
The current timestep in the diffusion chain. | |
Returns: | |
`torch.Tensor`: | |
A scaled input sample. | |
""" | |
return sample | |
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. | |
""" | |
if num_inference_steps > self.config.num_train_timesteps: | |
raise ValueError( | |
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | |
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | |
f" maximal {self.config.num_train_timesteps} timesteps." | |
) | |
self.num_inference_steps = num_inference_steps | |
# "leading" and "trailing" corresponds to annotation of Table 1. of https://arxiv.org/abs/2305.08891 | |
if self.config.timestep_spacing == "leading": | |
step_ratio = self.config.num_train_timesteps // self.num_inference_steps | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64) | |
timesteps += self.config.steps_offset | |
elif self.config.timestep_spacing == "trailing": | |
step_ratio = self.config.num_train_timesteps / self.num_inference_steps | |
# creates integer timesteps by multiplying by ratio | |
# casting to int to avoid issues when num_inference_step is power of 3 | |
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)[::-1]).astype(np.int64) | |
timesteps -= 1 | |
else: | |
raise ValueError( | |
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'." | |
) | |
self.timesteps = torch.from_numpy(timesteps).to(device) | |
def step( | |
self, | |
model_output: torch.Tensor, | |
timestep: int, | |
sample: torch.Tensor, | |
return_dict: bool = True, | |
) -> Union[DDIMSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.Tensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.Tensor`): | |
A current instance of a sample created by the diffusion process. | |
eta (`float`): | |
The weight of noise for added noise in diffusion step. | |
use_clipped_model_output (`bool`, defaults to `False`): | |
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary | |
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no | |
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and | |
`use_clipped_model_output` has no effect. | |
variance_noise (`torch.Tensor`): | |
Alternative to generating noise with `generator` by directly providing the noise for the variance | |
itself. Useful for methods such as [`CycleDiffusion`]. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] or | |
`tuple`. | |
Returns: | |
[`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] is | |
returned, otherwise a tuple is returned where the first element is the sample tensor. | |
""" | |
# 1. get previous step value (=t+1) | |
prev_timestep = timestep | |
timestep = min( | |
timestep - self.config.num_train_timesteps // self.num_inference_steps, self.config.num_train_timesteps - 1 | |
) | |
# 2. compute alphas, betas | |
# change original implementation to exactly match noise levels for analogous forward process | |
alpha_prod_t = self.alphas_cumprod[timestep] if timestep >= 0 else self.initial_alpha_cumprod | |
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
# 3. compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
if self.config.prediction_type == "epsilon": | |
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
pred_epsilon = model_output | |
elif self.config.prediction_type == "sample": | |
pred_original_sample = model_output | |
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) | |
elif self.config.prediction_type == "v_prediction": | |
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output | |
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" | |
" `v_prediction`" | |
) | |
# 4. Clip or threshold "predicted x_0" | |
if self.config.clip_sample: | |
pred_original_sample = pred_original_sample.clamp( | |
-self.config.clip_sample_range, self.config.clip_sample_range | |
) | |
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
pred_sample_direction = (1 - alpha_prod_t_prev) ** (0.5) * pred_epsilon | |
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
if not return_dict: | |
return (prev_sample, pred_original_sample) | |
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | |
def __len__(self): | |
return self.config.num_train_timesteps | |