Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import math | |
import os | |
from dataclasses import dataclass | |
from enum import Enum | |
from typing import Optional, Tuple, Union | |
import flax | |
import jax.numpy as jnp | |
from huggingface_hub.utils import validate_hf_hub_args | |
from ..utils import BaseOutput, PushToHubMixin | |
SCHEDULER_CONFIG_NAME = "scheduler_config.json" | |
# NOTE: We make this type an enum because it simplifies usage in docs and prevents | |
# circular imports when used for `_compatibles` within the schedulers module. | |
# When it's used as a type in pipelines, it really is a Union because the actual | |
# scheduler instance is passed in. | |
class FlaxKarrasDiffusionSchedulers(Enum): | |
FlaxDDIMScheduler = 1 | |
FlaxDDPMScheduler = 2 | |
FlaxPNDMScheduler = 3 | |
FlaxLMSDiscreteScheduler = 4 | |
FlaxDPMSolverMultistepScheduler = 5 | |
FlaxEulerDiscreteScheduler = 6 | |
class FlaxSchedulerOutput(BaseOutput): | |
""" | |
Base class for the scheduler's step function output. | |
Args: | |
prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
""" | |
prev_sample: jnp.ndarray | |
class FlaxSchedulerMixin(PushToHubMixin): | |
""" | |
Mixin containing common functions for the schedulers. | |
Class attributes: | |
- **_compatibles** (`List[str]`) -- A list of classes that are compatible with the parent class, so that | |
`from_config` can be used from a class different than the one used to save the config (should be overridden | |
by parent class). | |
""" | |
config_name = SCHEDULER_CONFIG_NAME | |
ignore_for_config = ["dtype"] | |
_compatibles = [] | |
has_compatibles = True | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, | |
subfolder: Optional[str] = None, | |
return_unused_kwargs=False, | |
**kwargs, | |
): | |
r""" | |
Instantiate a Scheduler class from a pre-defined JSON-file. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an | |
organization name, like `google/ddpm-celebahq-256`. | |
- A path to a *directory* containing model weights saved using [`~SchedulerMixin.save_pretrained`], | |
e.g., `./my_model_directory/`. | |
subfolder (`str`, *optional*): | |
In case the relevant files are located inside a subfolder of the model repo (either remote in | |
huggingface.co or downloaded locally), you can specify the folder name here. | |
return_unused_kwargs (`bool`, *optional*, defaults to `False`): | |
Whether kwargs that are not consumed by the Python class should be returned or not. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether or not to only look at local files (i.e., do not try to download the model). | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `transformers-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
<Tip> | |
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated | |
models](https://huggingface.co/docs/hub/models-gated#gated-models). | |
</Tip> | |
<Tip> | |
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to | |
use this method in a firewalled environment. | |
</Tip> | |
""" | |
config, kwargs = cls.load_config( | |
pretrained_model_name_or_path=pretrained_model_name_or_path, | |
subfolder=subfolder, | |
return_unused_kwargs=True, | |
**kwargs, | |
) | |
scheduler, unused_kwargs = cls.from_config(config, return_unused_kwargs=True, **kwargs) | |
if hasattr(scheduler, "create_state") and getattr(scheduler, "has_state", False): | |
state = scheduler.create_state() | |
if return_unused_kwargs: | |
return scheduler, state, unused_kwargs | |
return scheduler, state | |
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): | |
""" | |
Save a scheduler configuration object to the directory `save_directory`, so that it can be re-loaded using the | |
[`~FlaxSchedulerMixin.from_pretrained`] class method. | |
Args: | |
save_directory (`str` or `os.PathLike`): | |
Directory where the configuration JSON file will be saved (will be created if it does not exist). | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the | |
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your | |
namespace). | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. | |
""" | |
self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) | |
def compatibles(self): | |
""" | |
Returns all schedulers that are compatible with this scheduler | |
Returns: | |
`List[SchedulerMixin]`: List of compatible schedulers | |
""" | |
return self._get_compatibles() | |
def _get_compatibles(cls): | |
compatible_classes_str = list(set([cls.__name__] + cls._compatibles)) | |
diffusers_library = importlib.import_module(__name__.split(".")[0]) | |
compatible_classes = [ | |
getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c) | |
] | |
return compatible_classes | |
def broadcast_to_shape_from_left(x: jnp.ndarray, shape: Tuple[int]) -> jnp.ndarray: | |
assert len(shape) >= x.ndim | |
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(shape) - x.ndim)), shape) | |
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999, dtype=jnp.float32) -> jnp.ndarray: | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
(1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps (`int`): the number of betas to produce. | |
max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
Returns: | |
betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs | |
""" | |
def alpha_bar(time_step): | |
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return jnp.array(betas, dtype=dtype) | |
class CommonSchedulerState: | |
alphas: jnp.ndarray | |
betas: jnp.ndarray | |
alphas_cumprod: jnp.ndarray | |
def create(cls, scheduler): | |
config = scheduler.config | |
if config.trained_betas is not None: | |
betas = jnp.asarray(config.trained_betas, dtype=scheduler.dtype) | |
elif config.beta_schedule == "linear": | |
betas = jnp.linspace(config.beta_start, config.beta_end, config.num_train_timesteps, dtype=scheduler.dtype) | |
elif config.beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
betas = ( | |
jnp.linspace( | |
config.beta_start**0.5, config.beta_end**0.5, config.num_train_timesteps, dtype=scheduler.dtype | |
) | |
** 2 | |
) | |
elif config.beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
betas = betas_for_alpha_bar(config.num_train_timesteps, dtype=scheduler.dtype) | |
else: | |
raise NotImplementedError( | |
f"beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}" | |
) | |
alphas = 1.0 - betas | |
alphas_cumprod = jnp.cumprod(alphas, axis=0) | |
return cls( | |
alphas=alphas, | |
betas=betas, | |
alphas_cumprod=alphas_cumprod, | |
) | |
def get_sqrt_alpha_prod( | |
state: CommonSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray | |
): | |
alphas_cumprod = state.alphas_cumprod | |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
sqrt_alpha_prod = broadcast_to_shape_from_left(sqrt_alpha_prod, original_samples.shape) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
sqrt_one_minus_alpha_prod = broadcast_to_shape_from_left(sqrt_one_minus_alpha_prod, original_samples.shape) | |
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod | |
def add_noise_common( | |
state: CommonSchedulerState, original_samples: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray | |
): | |
sqrt_alpha_prod, sqrt_one_minus_alpha_prod = get_sqrt_alpha_prod(state, original_samples, noise, timesteps) | |
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
return noisy_samples | |
def get_velocity_common(state: CommonSchedulerState, sample: jnp.ndarray, noise: jnp.ndarray, timesteps: jnp.ndarray): | |
sqrt_alpha_prod, sqrt_one_minus_alpha_prod = get_sqrt_alpha_prod(state, sample, noise, timesteps) | |
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample | |
return velocity | |