OAOA's picture
first commit
bfa59ab
raw
history blame
729 Bytes
from dataclasses import dataclass
from typing import List, Union
import numpy as np
import PIL.Image
import torch
from ...utils import BaseOutput
@dataclass
class AnimateDiffPipelineOutput(BaseOutput):
r"""
Output class for AnimateDiff pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised
PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`
"""
frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]]