Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 ChatGLM3-6B Model Team, Kwai-Kolors Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import List, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn import LayerNorm | |
from torch.nn.utils import skip_init | |
from transformers import PretrainedConfig, PreTrainedModel | |
from transformers.modeling_outputs import BaseModelOutputWithPast | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
class ChatGLMConfig(PretrainedConfig): | |
model_type = "chatglm" | |
def __init__( | |
self, | |
num_layers=28, | |
padded_vocab_size=65024, | |
hidden_size=4096, | |
ffn_hidden_size=13696, | |
kv_channels=128, | |
num_attention_heads=32, | |
seq_length=2048, | |
hidden_dropout=0.0, | |
classifier_dropout=None, | |
attention_dropout=0.0, | |
layernorm_epsilon=1e-5, | |
rmsnorm=True, | |
apply_residual_connection_post_layernorm=False, | |
post_layer_norm=True, | |
add_bias_linear=False, | |
add_qkv_bias=False, | |
bias_dropout_fusion=True, | |
multi_query_attention=False, | |
multi_query_group_num=1, | |
apply_query_key_layer_scaling=True, | |
attention_softmax_in_fp32=True, | |
fp32_residual_connection=False, | |
quantization_bit=0, | |
pre_seq_len=None, | |
prefix_projection=False, | |
**kwargs, | |
): | |
self.num_layers = num_layers | |
self.vocab_size = padded_vocab_size | |
self.padded_vocab_size = padded_vocab_size | |
self.hidden_size = hidden_size | |
self.ffn_hidden_size = ffn_hidden_size | |
self.kv_channels = kv_channels | |
self.num_attention_heads = num_attention_heads | |
self.seq_length = seq_length | |
self.hidden_dropout = hidden_dropout | |
self.classifier_dropout = classifier_dropout | |
self.attention_dropout = attention_dropout | |
self.layernorm_epsilon = layernorm_epsilon | |
self.rmsnorm = rmsnorm | |
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm | |
self.post_layer_norm = post_layer_norm | |
self.add_bias_linear = add_bias_linear | |
self.add_qkv_bias = add_qkv_bias | |
self.bias_dropout_fusion = bias_dropout_fusion | |
self.multi_query_attention = multi_query_attention | |
self.multi_query_group_num = multi_query_group_num | |
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling | |
self.attention_softmax_in_fp32 = attention_softmax_in_fp32 | |
self.fp32_residual_connection = fp32_residual_connection | |
self.quantization_bit = quantization_bit | |
self.pre_seq_len = pre_seq_len | |
self.prefix_projection = prefix_projection | |
super().__init__(**kwargs) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): | |
super().__init__() | |
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype)) | |
self.eps = eps | |
def forward(self, hidden_states: torch.Tensor): | |
input_dtype = hidden_states.dtype | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | |
return (self.weight * hidden_states).to(input_dtype) | |
def _config_to_kwargs(args): | |
common_kwargs = { | |
"dtype": args.torch_dtype, | |
} | |
return common_kwargs | |
class CoreAttention(torch.nn.Module): | |
def __init__(self, config: ChatGLMConfig, layer_number): | |
super(CoreAttention, self).__init__() | |
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling | |
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 | |
if self.apply_query_key_layer_scaling: | |
self.attention_softmax_in_fp32 = True | |
self.layer_number = max(1, layer_number) | |
projection_size = config.kv_channels * config.num_attention_heads | |
# Per attention head and per partition values. | |
self.hidden_size_per_partition = projection_size | |
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads | |
self.num_attention_heads_per_partition = config.num_attention_heads | |
coeff = None | |
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) | |
if self.apply_query_key_layer_scaling: | |
coeff = self.layer_number | |
self.norm_factor *= coeff | |
self.coeff = coeff | |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout) | |
def forward(self, query_layer, key_layer, value_layer, attention_mask): | |
pytorch_major_version = int(torch.__version__.split(".")[0]) | |
if pytorch_major_version >= 2: | |
query_layer, key_layer, value_layer = [ | |
k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer] | |
] | |
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: | |
context_layer = torch.nn.functional.scaled_dot_product_attention( | |
query_layer, key_layer, value_layer, is_causal=True | |
) | |
else: | |
if attention_mask is not None: | |
attention_mask = ~attention_mask | |
context_layer = torch.nn.functional.scaled_dot_product_attention( | |
query_layer, key_layer, value_layer, attention_mask | |
) | |
context_layer = context_layer.permute(2, 0, 1, 3) | |
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) | |
context_layer = context_layer.reshape(*new_context_layer_shape) | |
else: | |
# Raw attention scores | |
# [b, np, sq, sk] | |
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) | |
# [sq, b, np, hn] -> [sq, b * np, hn] | |
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) | |
# [sk, b, np, hn] -> [sk, b * np, hn] | |
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) | |
# preallocting input tensor: [b * np, sq, sk] | |
matmul_input_buffer = torch.empty( | |
output_size[0] * output_size[1], | |
output_size[2], | |
output_size[3], | |
dtype=query_layer.dtype, | |
device=query_layer.device, | |
) | |
# Raw attention scores. [b * np, sq, sk] | |
matmul_result = torch.baddbmm( | |
matmul_input_buffer, | |
query_layer.transpose(0, 1), # [b * np, sq, hn] | |
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] | |
beta=0.0, | |
alpha=(1.0 / self.norm_factor), | |
) | |
# change view to [b, np, sq, sk] | |
attention_scores = matmul_result.view(*output_size) | |
# =========================== | |
# Attention probs and dropout | |
# =========================== | |
# attention scores and attention mask [b, np, sq, sk] | |
if self.attention_softmax_in_fp32: | |
attention_scores = attention_scores.float() | |
if self.coeff is not None: | |
attention_scores = attention_scores * self.coeff | |
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]: | |
attention_mask = torch.ones( | |
output_size[0], 1, output_size[2], output_size[3], device=attention_scores.device, dtype=torch.bool | |
) | |
attention_mask.tril_() | |
attention_mask = ~attention_mask | |
if attention_mask is not None: | |
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf")) | |
attention_probs = F.softmax(attention_scores, dim=-1) | |
attention_probs = attention_probs.type_as(value_layer) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
attention_probs = self.attention_dropout(attention_probs) | |
# ========================= | |
# Context layer. [sq, b, hp] | |
# ========================= | |
# value_layer -> context layer. | |
# [sk, b, np, hn] --> [b, np, sq, hn] | |
# context layer shape: [b, np, sq, hn] | |
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) | |
# change view [sk, b * np, hn] | |
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) | |
# change view [b * np, sq, sk] | |
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) | |
# matmul: [b * np, sq, hn] | |
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) | |
# change view [b, np, sq, hn] | |
context_layer = context_layer.view(*output_size) | |
# [b, np, sq, hn] --> [sq, b, np, hn] | |
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() | |
# [sq, b, np, hn] --> [sq, b, hp] | |
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
return context_layer | |
def split_tensor_along_last_dim( | |
tensor: torch.Tensor, | |
num_partitions: int, | |
contiguous_split_chunks: bool = False, | |
) -> List[torch.Tensor]: | |
"""Split a tensor along its last dimension. | |
Arguments: | |
tensor: input tensor. | |
num_partitions: number of partitions to split the tensor | |
contiguous_split_chunks: If True, make each chunk contiguous | |
in memory. | |
Returns: | |
A list of Tensors | |
""" | |
# Get the size and dimension. | |
last_dim = tensor.dim() - 1 | |
last_dim_size = tensor.size()[last_dim] // num_partitions | |
# Split. | |
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) | |
# Note: torch.split does not create contiguous tensors by default. | |
if contiguous_split_chunks: | |
return tuple(chunk.contiguous() for chunk in tensor_list) | |
return tensor_list | |
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: | |
# x: [sq, b, np, hn] | |
sq, _b, np, _hn = x.size(0), x.size(1), x.size(2), x.size(3) | |
rot_dim = rope_cache.shape[-2] * 2 | |
x, x_pass = x[..., :rot_dim], x[..., rot_dim:] | |
# truncate to support variable sizes | |
rope_cache = rope_cache[:sq] | |
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2) | |
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2) | |
x_out2 = torch.stack( | |
[ | |
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], | |
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], | |
], | |
-1, | |
) | |
x_out2 = x_out2.flatten(3) | |
return torch.cat((x_out2, x_pass), dim=-1) | |
class SelfAttention(torch.nn.Module): | |
"""Parallel self-attention layer abstract class. | |
Self-attention layer takes input with size [s, b, h] and returns output of the same size. | |
""" | |
def __init__(self, config: ChatGLMConfig, layer_number, device=None): | |
super(SelfAttention, self).__init__() | |
self.layer_number = max(1, layer_number) | |
self.projection_size = config.kv_channels * config.num_attention_heads | |
# Per attention head and per partition values. | |
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads | |
self.num_attention_heads_per_partition = config.num_attention_heads | |
self.multi_query_attention = config.multi_query_attention | |
self.qkv_hidden_size = 3 * self.projection_size | |
if self.multi_query_attention: | |
self.num_multi_query_groups_per_partition = config.multi_query_group_num | |
self.qkv_hidden_size = ( | |
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num | |
) | |
self.query_key_value = nn.Linear( | |
config.hidden_size, | |
self.qkv_hidden_size, | |
bias=config.add_bias_linear or config.add_qkv_bias, | |
device=device, | |
**_config_to_kwargs(config), | |
) | |
self.core_attention = CoreAttention(config, self.layer_number) | |
# Output. | |
self.dense = nn.Linear( | |
self.projection_size, | |
config.hidden_size, | |
bias=config.add_bias_linear, | |
device=device, | |
**_config_to_kwargs(config), | |
) | |
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None): | |
if self.multi_query_attention: | |
num_attention_heads = self.num_multi_query_groups_per_partition | |
else: | |
num_attention_heads = self.num_attention_heads_per_partition | |
return torch.empty( | |
inference_max_sequence_len, | |
batch_size, | |
num_attention_heads, | |
self.hidden_size_per_attention_head, | |
dtype=dtype, | |
device=device, | |
) | |
def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True): | |
# hidden_states: [sq, b, h] | |
# ================================================= | |
# Pre-allocate memory for key-values for inference. | |
# ================================================= | |
# ===================== | |
# Query, Key, and Value | |
# ===================== | |
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)] | |
mixed_x_layer = self.query_key_value(hidden_states) | |
if self.multi_query_attention: | |
(query_layer, key_layer, value_layer) = mixed_x_layer.split( | |
[ | |
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, | |
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, | |
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, | |
], | |
dim=-1, | |
) | |
query_layer = query_layer.view( | |
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) | |
) | |
key_layer = key_layer.view( | |
key_layer.size()[:-1] | |
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) | |
) | |
value_layer = value_layer.view( | |
value_layer.size()[:-1] | |
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) | |
) | |
else: | |
new_tensor_shape = mixed_x_layer.size()[:-1] + ( | |
self.num_attention_heads_per_partition, | |
3 * self.hidden_size_per_attention_head, | |
) | |
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | |
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn] | |
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) | |
# apply relative positional encoding (rotary embedding) | |
if rotary_pos_emb is not None: | |
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) | |
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) | |
# adjust key and value for inference | |
if kv_cache is not None: | |
cache_k, cache_v = kv_cache | |
key_layer = torch.cat((cache_k, key_layer), dim=0) | |
value_layer = torch.cat((cache_v, value_layer), dim=0) | |
if use_cache: | |
kv_cache = (key_layer, value_layer) | |
else: | |
kv_cache = None | |
if self.multi_query_attention: | |
key_layer = key_layer.unsqueeze(-2) | |
key_layer = key_layer.expand( | |
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1 | |
) | |
key_layer = key_layer.contiguous().view( | |
key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) | |
) | |
value_layer = value_layer.unsqueeze(-2) | |
value_layer = value_layer.expand( | |
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1 | |
) | |
value_layer = value_layer.contiguous().view( | |
value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) | |
) | |
# ================================== | |
# core attention computation | |
# ================================== | |
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) | |
# ================= | |
# Output. [sq, b, h] | |
# ================= | |
output = self.dense(context_layer) | |
return output, kv_cache | |
class MLP(torch.nn.Module): | |
"""MLP. | |
MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation, | |
and project the state back into h hidden dimension. | |
""" | |
def __init__(self, config: ChatGLMConfig, device=None): | |
super(MLP, self).__init__() | |
self.add_bias = config.add_bias_linear | |
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf | |
self.dense_h_to_4h = nn.Linear( | |
config.hidden_size, | |
config.ffn_hidden_size * 2, | |
bias=self.add_bias, | |
device=device, | |
**_config_to_kwargs(config), | |
) | |
def swiglu(x): | |
x = torch.chunk(x, 2, dim=-1) | |
return F.silu(x[0]) * x[1] | |
self.activation_func = swiglu | |
# Project back to h. | |
self.dense_4h_to_h = nn.Linear( | |
config.ffn_hidden_size, config.hidden_size, bias=self.add_bias, device=device, **_config_to_kwargs(config) | |
) | |
def forward(self, hidden_states): | |
# [s, b, 4hp] | |
intermediate_parallel = self.dense_h_to_4h(hidden_states) | |
intermediate_parallel = self.activation_func(intermediate_parallel) | |
# [s, b, h] | |
output = self.dense_4h_to_h(intermediate_parallel) | |
return output | |
class GLMBlock(torch.nn.Module): | |
"""A single transformer layer. | |
Transformer layer takes input with size [s, b, h] and returns an output of the same size. | |
""" | |
def __init__(self, config: ChatGLMConfig, layer_number, device=None): | |
super(GLMBlock, self).__init__() | |
self.layer_number = layer_number | |
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | |
self.fp32_residual_connection = config.fp32_residual_connection | |
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm | |
# Layernorm on the input data. | |
self.input_layernorm = LayerNormFunc( | |
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype | |
) | |
# Self attention. | |
self.self_attention = SelfAttention(config, layer_number, device=device) | |
self.hidden_dropout = config.hidden_dropout | |
# Layernorm on the attention output | |
self.post_attention_layernorm = LayerNormFunc( | |
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype | |
) | |
# MLP | |
self.mlp = MLP(config, device=device) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask, | |
rotary_pos_emb, | |
kv_cache=None, | |
use_cache=True, | |
): | |
# hidden_states: [s, b, h] | |
# Layer norm at the beginning of the transformer layer. | |
layernorm_output = self.input_layernorm(hidden_states) | |
# Self attention. | |
attention_output, kv_cache = self.self_attention( | |
layernorm_output, attention_mask, rotary_pos_emb, kv_cache=kv_cache, use_cache=use_cache | |
) | |
# Residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = hidden_states | |
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training) | |
layernorm_input = residual + layernorm_input | |
# Layer norm post the self attention. | |
layernorm_output = self.post_attention_layernorm(layernorm_input) | |
# MLP. | |
mlp_output = self.mlp(layernorm_output) | |
# Second residual connection. | |
if self.apply_residual_connection_post_layernorm: | |
residual = layernorm_output | |
else: | |
residual = layernorm_input | |
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training) | |
output = residual + output | |
return output, kv_cache | |
class GLMTransformer(torch.nn.Module): | |
"""Transformer class.""" | |
def __init__(self, config: ChatGLMConfig, device=None): | |
super(GLMTransformer, self).__init__() | |
self.fp32_residual_connection = config.fp32_residual_connection | |
self.post_layer_norm = config.post_layer_norm | |
# Number of layers. | |
self.num_layers = config.num_layers | |
# Transformer layers. | |
def build_layer(layer_number): | |
return GLMBlock(config, layer_number, device=device) | |
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)]) | |
if self.post_layer_norm: | |
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm | |
# Final layer norm before output. | |
self.final_layernorm = LayerNormFunc( | |
config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype | |
) | |
self.gradient_checkpointing = False | |
def _get_layer(self, layer_number): | |
return self.layers[layer_number] | |
def forward( | |
self, | |
hidden_states, | |
attention_mask, | |
rotary_pos_emb, | |
kv_caches=None, | |
use_cache: Optional[bool] = True, | |
output_hidden_states: Optional[bool] = False, | |
): | |
if not kv_caches: | |
kv_caches = [None for _ in range(self.num_layers)] | |
presents = () if use_cache else None | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
all_self_attentions = None | |
all_hidden_states = () if output_hidden_states else None | |
for index in range(self.num_layers): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
layer = self._get_layer(index) | |
if self.gradient_checkpointing and self.training: | |
layer_ret = torch.utils.checkpoint.checkpoint( | |
layer, hidden_states, attention_mask, rotary_pos_emb, kv_caches[index], use_cache | |
) | |
else: | |
layer_ret = layer( | |
hidden_states, attention_mask, rotary_pos_emb, kv_cache=kv_caches[index], use_cache=use_cache | |
) | |
hidden_states, kv_cache = layer_ret | |
if use_cache: | |
presents = presents + (kv_cache,) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
# Final layer norm. | |
if self.post_layer_norm: | |
hidden_states = self.final_layernorm(hidden_states) | |
return hidden_states, presents, all_hidden_states, all_self_attentions | |
class ChatGLMPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
is_parallelizable = False | |
supports_gradient_checkpointing = True | |
config_class = ChatGLMConfig | |
base_model_prefix = "transformer" | |
_no_split_modules = ["GLMBlock"] | |
def _init_weights(self, module: nn.Module): | |
"""Initialize the weights.""" | |
return | |
def get_masks(self, input_ids, past_key_values, padding_mask=None): | |
batch_size, seq_length = input_ids.shape | |
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device) | |
full_attention_mask.tril_() | |
past_length = 0 | |
if past_key_values: | |
past_length = past_key_values[0][0].shape[0] | |
if past_length: | |
full_attention_mask = torch.cat( | |
(torch.ones(batch_size, seq_length, past_length, device=input_ids.device), full_attention_mask), dim=-1 | |
) | |
if padding_mask is not None: | |
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) | |
if not past_length and padding_mask is not None: | |
full_attention_mask -= padding_mask.unsqueeze(-1) - 1 | |
full_attention_mask = (full_attention_mask < 0.5).bool() | |
full_attention_mask.unsqueeze_(1) | |
return full_attention_mask | |
def get_position_ids(self, input_ids, device): | |
batch_size, seq_length = input_ids.shape | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) | |
return position_ids | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, GLMTransformer): | |
module.gradient_checkpointing = value | |
def default_init(cls, *args, **kwargs): | |
return cls(*args, **kwargs) | |
class Embedding(torch.nn.Module): | |
"""Language model embeddings.""" | |
def __init__(self, config: ChatGLMConfig, device=None): | |
super(Embedding, self).__init__() | |
self.hidden_size = config.hidden_size | |
# Word embeddings (parallel). | |
self.word_embeddings = nn.Embedding( | |
config.padded_vocab_size, self.hidden_size, dtype=config.torch_dtype, device=device | |
) | |
self.fp32_residual_connection = config.fp32_residual_connection | |
def forward(self, input_ids): | |
# Embeddings. | |
words_embeddings = self.word_embeddings(input_ids) | |
embeddings = words_embeddings | |
# Data format change to avoid explicit tranposes : [b s h] --> [s b h]. | |
embeddings = embeddings.transpose(0, 1).contiguous() | |
# If the input flag for fp32 residual connection is set, convert for float. | |
if self.fp32_residual_connection: | |
embeddings = embeddings.float() | |
return embeddings | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, dim, original_impl=False, device=None, dtype=None): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
self.dim = dim | |
self.original_impl = original_impl | |
def forward_impl(self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000): | |
"""Enhanced Transformer with Rotary Position Embedding. | |
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ | |
transformers/rope/__init__.py. MIT License: | |
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. | |
""" | |
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ | |
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem)) | |
# Create position indexes `[0, 1, ..., seq_len - 1]` | |
seq_idx = torch.arange(seq_len, dtype=torch.float, device=device) | |
# Calculate the product of position index and $\theta_i$ | |
idx_theta = torch.outer(seq_idx, theta).float() | |
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) | |
# this is to mimic the behaviour of complex32, else we will get different results | |
if dtype in (torch.float16, torch.bfloat16, torch.int8): | |
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half() | |
return cache | |
def forward(self, max_seq_len, offset=0): | |
return self.forward_impl(max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device) | |
class PrefixEncoder(torch.nn.Module): | |
""" | |
The torch.nn model to encode the prefix Input shape: (batch-size, prefix-length) Output shape: (batch-size, | |
prefix-length, 2*layers*hidden) | |
""" | |
def __init__(self, config: ChatGLMConfig): | |
super().__init__() | |
self.prefix_projection = config.prefix_projection | |
if self.prefix_projection: | |
# Use a two-layer MLP to encode the prefix | |
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2 | |
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size) | |
self.trans = torch.nn.Sequential( | |
torch.nn.Linear(kv_size, config.hidden_size), | |
torch.nn.Tanh(), | |
torch.nn.Linear(config.hidden_size, kv_size), | |
) | |
else: | |
self.embedding = torch.nn.Embedding( | |
config.pre_seq_len, config.num_layers * config.kv_channels * config.multi_query_group_num * 2 | |
) | |
def forward(self, prefix: torch.Tensor): | |
if self.prefix_projection: | |
prefix_tokens = self.embedding(prefix) | |
past_key_values = self.trans(prefix_tokens) | |
else: | |
past_key_values = self.embedding(prefix) | |
return past_key_values | |
class ChatGLMModel(ChatGLMPreTrainedModel): | |
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True): | |
super().__init__(config) | |
if empty_init: | |
init_method = skip_init | |
else: | |
init_method = default_init | |
init_kwargs = {} | |
if device is not None: | |
init_kwargs["device"] = device | |
self.embedding = init_method(Embedding, config, **init_kwargs) | |
self.num_layers = config.num_layers | |
self.multi_query_group_num = config.multi_query_group_num | |
self.kv_channels = config.kv_channels | |
# Rotary positional embeddings | |
self.seq_length = config.seq_length | |
rotary_dim = ( | |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels | |
) | |
self.rotary_pos_emb = RotaryEmbedding( | |
rotary_dim // 2, original_impl=config.original_rope, device=device, dtype=config.torch_dtype | |
) | |
self.encoder = init_method(GLMTransformer, config, **init_kwargs) | |
self.output_layer = init_method( | |
nn.Linear, | |
config.hidden_size, | |
config.padded_vocab_size, | |
bias=False, | |
dtype=config.torch_dtype, | |
**init_kwargs, | |
) | |
self.pre_seq_len = config.pre_seq_len | |
self.prefix_projection = config.prefix_projection | |
if self.pre_seq_len is not None: | |
for param in self.parameters(): | |
param.requires_grad = False | |
self.prefix_tokens = torch.arange(self.pre_seq_len).long() | |
self.prefix_encoder = PrefixEncoder(config) | |
self.dropout = torch.nn.Dropout(0.1) | |
def get_input_embeddings(self): | |
return self.embedding.word_embeddings | |
def get_prompt(self, batch_size, device, dtype=torch.half): | |
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) | |
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) | |
past_key_values = past_key_values.view( | |
batch_size, self.pre_seq_len, self.num_layers * 2, self.multi_query_group_num, self.kv_channels | |
) | |
# seq_len, b, nh, hidden_size | |
past_key_values = self.dropout(past_key_values) | |
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) | |
return past_key_values | |
def forward( | |
self, | |
input_ids, | |
position_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
full_attention_mask: Optional[torch.BoolTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
use_cache: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
): | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
batch_size, seq_length = input_ids.shape | |
if inputs_embeds is None: | |
inputs_embeds = self.embedding(input_ids) | |
if self.pre_seq_len is not None: | |
if past_key_values is None: | |
past_key_values = self.get_prompt( | |
batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype | |
) | |
if attention_mask is not None: | |
attention_mask = torch.cat( | |
[attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1 | |
) | |
if full_attention_mask is None: | |
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): | |
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) | |
# Rotary positional embeddings | |
rotary_pos_emb = self.rotary_pos_emb(self.seq_length) | |
if position_ids is not None: | |
rotary_pos_emb = rotary_pos_emb[position_ids] | |
else: | |
rotary_pos_emb = rotary_pos_emb[None, :seq_length] | |
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() | |
# Run encoder. | |
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( | |
inputs_embeds, | |
full_attention_mask, | |
rotary_pos_emb=rotary_pos_emb, | |
kv_caches=past_key_values, | |
use_cache=use_cache, | |
output_hidden_states=output_hidden_states, | |
) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=presents, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |