Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...utils import is_torch_version, logging | |
from ..attention import BasicTransformerBlock | |
from ..embeddings import PatchEmbed | |
from ..modeling_outputs import Transformer2DModelOutput | |
from ..modeling_utils import ModelMixin | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class DiTTransformer2DModel(ModelMixin, ConfigMixin): | |
r""" | |
A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748). | |
Parameters: | |
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (int, optional, defaults to 72): The number of channels in each head. | |
in_channels (int, defaults to 4): The number of channels in the input. | |
out_channels (int, optional): | |
The number of channels in the output. Specify this parameter if the output channel number differs from the | |
input. | |
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. | |
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. | |
norm_num_groups (int, optional, defaults to 32): | |
Number of groups for group normalization within Transformer blocks. | |
attention_bias (bool, optional, defaults to True): | |
Configure if the Transformer blocks' attention should contain a bias parameter. | |
sample_size (int, defaults to 32): | |
The width of the latent images. This parameter is fixed during training. | |
patch_size (int, defaults to 2): | |
Size of the patches the model processes, relevant for architectures working on non-sequential data. | |
activation_fn (str, optional, defaults to "gelu-approximate"): | |
Activation function to use in feed-forward networks within Transformer blocks. | |
num_embeds_ada_norm (int, optional, defaults to 1000): | |
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during | |
inference. | |
upcast_attention (bool, optional, defaults to False): | |
If true, upcasts the attention mechanism dimensions for potentially improved performance. | |
norm_type (str, optional, defaults to "ada_norm_zero"): | |
Specifies the type of normalization used, can be 'ada_norm_zero'. | |
norm_elementwise_affine (bool, optional, defaults to False): | |
If true, enables element-wise affine parameters in the normalization layers. | |
norm_eps (float, optional, defaults to 1e-5): | |
A small constant added to the denominator in normalization layers to prevent division by zero. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 72, | |
in_channels: int = 4, | |
out_channels: Optional[int] = None, | |
num_layers: int = 28, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
attention_bias: bool = True, | |
sample_size: int = 32, | |
patch_size: int = 2, | |
activation_fn: str = "gelu-approximate", | |
num_embeds_ada_norm: Optional[int] = 1000, | |
upcast_attention: bool = False, | |
norm_type: str = "ada_norm_zero", | |
norm_elementwise_affine: bool = False, | |
norm_eps: float = 1e-5, | |
): | |
super().__init__() | |
# Validate inputs. | |
if norm_type != "ada_norm_zero": | |
raise NotImplementedError( | |
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." | |
) | |
elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." | |
) | |
# Set some common variables used across the board. | |
self.attention_head_dim = attention_head_dim | |
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
self.out_channels = in_channels if out_channels is None else out_channels | |
self.gradient_checkpointing = False | |
# 2. Initialize the position embedding and transformer blocks. | |
self.height = self.config.sample_size | |
self.width = self.config.sample_size | |
self.patch_size = self.config.patch_size | |
self.pos_embed = PatchEmbed( | |
height=self.config.sample_size, | |
width=self.config.sample_size, | |
patch_size=self.config.patch_size, | |
in_channels=self.config.in_channels, | |
embed_dim=self.inner_dim, | |
) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
self.inner_dim, | |
self.config.num_attention_heads, | |
self.config.attention_head_dim, | |
dropout=self.config.dropout, | |
activation_fn=self.config.activation_fn, | |
num_embeds_ada_norm=self.config.num_embeds_ada_norm, | |
attention_bias=self.config.attention_bias, | |
upcast_attention=self.config.upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=self.config.norm_elementwise_affine, | |
norm_eps=self.config.norm_eps, | |
) | |
for _ in range(self.config.num_layers) | |
] | |
) | |
# 3. Output blocks. | |
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) | |
self.proj_out_2 = nn.Linear( | |
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels | |
) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if hasattr(module, "gradient_checkpointing"): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: Optional[torch.LongTensor] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
return_dict: bool = True, | |
): | |
""" | |
The [`DiTTransformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
Input `hidden_states`. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
`AdaLayerZeroNorm`. | |
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
# 1. Input | |
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
hidden_states = self.pos_embed(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(block), | |
hidden_states, | |
None, | |
None, | |
None, | |
timestep, | |
cross_attention_kwargs, | |
class_labels, | |
**ckpt_kwargs, | |
) | |
else: | |
hidden_states = block( | |
hidden_states, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
timestep=timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels, | |
) | |
# 3. Output | |
conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype) | |
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
hidden_states = self.proj_out_2(hidden_states) | |
# unpatchify | |
height = width = int(hidden_states.shape[1] ** 0.5) | |
hidden_states = hidden_states.reshape( | |
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) | |
) | |
if not return_dict: | |
return (output,) | |
return Transformer2DModelOutput(sample=output) | |