InvSR / configs /sample-sd-turbo.yaml
OAOA's picture
first commit
bfa59ab
raw
history blame
2.02 kB
seed: 12345
# Super-resolution settings
basesr:
sf: 4
chopping: # for latent diffusion
pch_size: 128
weight_type: Gaussian
extra_bs: 8 # 16 ----> 26G memory
# VAE settings
tiled_vae: True
latent_tiled_size: 128
sample_tiled_size: 1024
gradient_checkpointing_vae: True
sliced_vae: False
# classifer-free guidance
cfg_scale: 1.0
# sampling settings
start_timesteps: 200
# color fixing
color_fix: ~
# Stable Diffusion
base_model: sd-turbo
sd_pipe:
target: diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline
enable_grad_checkpoint: True
params:
pretrained_model_name_or_path: stabilityai/sd-turbo
use_safetensors: True
torch_dtype: torch.float16
model_start:
target: diffusers.models.autoencoders.NoisePredictor
ckpt_path: ~ # For initializing
params:
in_channels: 3
down_block_types:
- AttnDownBlock2D
- AttnDownBlock2D
up_block_types:
- AttnUpBlock2D
- AttnUpBlock2D
block_out_channels:
- 256 # 192, 256
- 512 # 384, 512
layers_per_block:
- 3
- 3
act_fn: silu
latent_channels: 4
norm_num_groups: 32
sample_size: 128
mid_block_add_attention: True
resnet_time_scale_shift: default
temb_channels: 512
attention_head_dim: 64
freq_shift: 0
flip_sin_to_cos: True
double_z: True
model_middle:
target: diffusers.models.autoencoders.NoisePredictor
params:
in_channels: 3
down_block_types:
- AttnDownBlock2D
- AttnDownBlock2D
up_block_types:
- AttnUpBlock2D
- AttnUpBlock2D
block_out_channels:
- 256 # 192, 256
- 512 # 384, 512
layers_per_block:
- 3
- 3
act_fn: silu
latent_channels: 4
norm_num_groups: 32
sample_size: 128
mid_block_add_attention: True
resnet_time_scale_shift: default
temb_channels: 512
attention_head_dim: 64
freq_shift: 0
flip_sin_to_cos: True
double_z: True