Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import itertools | |
import json | |
import os | |
import re | |
from collections import OrderedDict | |
from functools import partial | |
from pathlib import Path | |
from typing import Any, Callable, List, Optional, Tuple, Union | |
import safetensors | |
import torch | |
from huggingface_hub import create_repo, split_torch_state_dict_into_shards | |
from huggingface_hub.utils import validate_hf_hub_args | |
from torch import Tensor, nn | |
from .. import __version__ | |
from ..utils import ( | |
CONFIG_NAME, | |
FLAX_WEIGHTS_NAME, | |
SAFE_WEIGHTS_INDEX_NAME, | |
SAFETENSORS_WEIGHTS_NAME, | |
WEIGHTS_INDEX_NAME, | |
WEIGHTS_NAME, | |
_add_variant, | |
_get_checkpoint_shard_files, | |
_get_model_file, | |
deprecate, | |
is_accelerate_available, | |
is_torch_version, | |
logging, | |
) | |
from ..utils.hub_utils import ( | |
PushToHubMixin, | |
load_or_create_model_card, | |
populate_model_card, | |
) | |
from .model_loading_utils import ( | |
_determine_device_map, | |
_fetch_index_file, | |
_load_state_dict_into_model, | |
load_model_dict_into_meta, | |
load_state_dict, | |
) | |
logger = logging.get_logger(__name__) | |
_REGEX_SHARD = re.compile(r"(.*?)-\d{5}-of-\d{5}") | |
if is_torch_version(">=", "1.9.0"): | |
_LOW_CPU_MEM_USAGE_DEFAULT = True | |
else: | |
_LOW_CPU_MEM_USAGE_DEFAULT = False | |
if is_accelerate_available(): | |
import accelerate | |
def get_parameter_device(parameter: torch.nn.Module) -> torch.device: | |
try: | |
parameters_and_buffers = itertools.chain(parameter.parameters(), parameter.buffers()) | |
return next(parameters_and_buffers).device | |
except StopIteration: | |
# For torch.nn.DataParallel compatibility in PyTorch 1.5 | |
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: | |
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
return tuples | |
gen = parameter._named_members(get_members_fn=find_tensor_attributes) | |
first_tuple = next(gen) | |
return first_tuple[1].device | |
def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype: | |
try: | |
params = tuple(parameter.parameters()) | |
if len(params) > 0: | |
return params[0].dtype | |
buffers = tuple(parameter.buffers()) | |
if len(buffers) > 0: | |
return buffers[0].dtype | |
except StopIteration: | |
# For torch.nn.DataParallel compatibility in PyTorch 1.5 | |
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]: | |
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] | |
return tuples | |
gen = parameter._named_members(get_members_fn=find_tensor_attributes) | |
first_tuple = next(gen) | |
return first_tuple[1].dtype | |
class ModelMixin(torch.nn.Module, PushToHubMixin): | |
r""" | |
Base class for all models. | |
[`ModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and | |
saving models. | |
- **config_name** ([`str`]) -- Filename to save a model to when calling [`~models.ModelMixin.save_pretrained`]. | |
""" | |
config_name = CONFIG_NAME | |
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"] | |
_supports_gradient_checkpointing = False | |
_keys_to_ignore_on_load_unexpected = None | |
_no_split_modules = None | |
def __init__(self): | |
super().__init__() | |
def __getattr__(self, name: str) -> Any: | |
"""The only reason we overwrite `getattr` here is to gracefully deprecate accessing | |
config attributes directly. See https://github.com/huggingface/diffusers/pull/3129 We need to overwrite | |
__getattr__ here in addition so that we don't trigger `torch.nn.Module`'s __getattr__': | |
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module | |
""" | |
is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name) | |
is_attribute = name in self.__dict__ | |
if is_in_config and not is_attribute: | |
deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'unet.config.{name}'." | |
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False, stacklevel=3) | |
return self._internal_dict[name] | |
# call PyTorch's https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module | |
return super().__getattr__(name) | |
def is_gradient_checkpointing(self) -> bool: | |
""" | |
Whether gradient checkpointing is activated for this model or not. | |
""" | |
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) | |
def enable_gradient_checkpointing(self) -> None: | |
""" | |
Activates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or | |
*checkpoint activations* in other frameworks). | |
""" | |
if not self._supports_gradient_checkpointing: | |
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.") | |
self.apply(partial(self._set_gradient_checkpointing, value=True)) | |
def disable_gradient_checkpointing(self) -> None: | |
""" | |
Deactivates gradient checkpointing for the current model (may be referred to as *activation checkpointing* or | |
*checkpoint activations* in other frameworks). | |
""" | |
if self._supports_gradient_checkpointing: | |
self.apply(partial(self._set_gradient_checkpointing, value=False)) | |
def set_use_npu_flash_attention(self, valid: bool) -> None: | |
r""" | |
Set the switch for the npu flash attention. | |
""" | |
def fn_recursive_set_npu_flash_attention(module: torch.nn.Module): | |
if hasattr(module, "set_use_npu_flash_attention"): | |
module.set_use_npu_flash_attention(valid) | |
for child in module.children(): | |
fn_recursive_set_npu_flash_attention(child) | |
for module in self.children(): | |
if isinstance(module, torch.nn.Module): | |
fn_recursive_set_npu_flash_attention(module) | |
def enable_npu_flash_attention(self) -> None: | |
r""" | |
Enable npu flash attention from torch_npu | |
""" | |
self.set_use_npu_flash_attention(True) | |
def disable_npu_flash_attention(self) -> None: | |
r""" | |
disable npu flash attention from torch_npu | |
""" | |
self.set_use_npu_flash_attention(False) | |
def set_use_memory_efficient_attention_xformers( | |
self, valid: bool, attention_op: Optional[Callable] = None | |
) -> None: | |
# Recursively walk through all the children. | |
# Any children which exposes the set_use_memory_efficient_attention_xformers method | |
# gets the message | |
def fn_recursive_set_mem_eff(module: torch.nn.Module): | |
if hasattr(module, "set_use_memory_efficient_attention_xformers"): | |
module.set_use_memory_efficient_attention_xformers(valid, attention_op) | |
for child in module.children(): | |
fn_recursive_set_mem_eff(child) | |
for module in self.children(): | |
if isinstance(module, torch.nn.Module): | |
fn_recursive_set_mem_eff(module) | |
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None) -> None: | |
r""" | |
Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). | |
When this option is enabled, you should observe lower GPU memory usage and a potential speed up during | |
inference. Speed up during training is not guaranteed. | |
<Tip warning={true}> | |
⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes | |
precedent. | |
</Tip> | |
Parameters: | |
attention_op (`Callable`, *optional*): | |
Override the default `None` operator for use as `op` argument to the | |
[`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention) | |
function of xFormers. | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import UNet2DConditionModel | |
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp | |
>>> model = UNet2DConditionModel.from_pretrained( | |
... "stabilityai/stable-diffusion-2-1", subfolder="unet", torch_dtype=torch.float16 | |
... ) | |
>>> model = model.to("cuda") | |
>>> model.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp) | |
``` | |
""" | |
self.set_use_memory_efficient_attention_xformers(True, attention_op) | |
def disable_xformers_memory_efficient_attention(self) -> None: | |
r""" | |
Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). | |
""" | |
self.set_use_memory_efficient_attention_xformers(False) | |
def save_pretrained( | |
self, | |
save_directory: Union[str, os.PathLike], | |
is_main_process: bool = True, | |
save_function: Optional[Callable] = None, | |
safe_serialization: bool = True, | |
variant: Optional[str] = None, | |
max_shard_size: Union[int, str] = "10GB", | |
push_to_hub: bool = False, | |
**kwargs, | |
): | |
""" | |
Save a model and its configuration file to a directory so that it can be reloaded using the | |
[`~models.ModelMixin.from_pretrained`] class method. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to save a model and its configuration file to. Will be created if it doesn't exist. | |
is_main_process (`bool`, *optional*, defaults to `True`): | |
Whether the process calling this is the main process or not. Useful during distributed training and you | |
need to call this function on all processes. In this case, set `is_main_process=True` only on the main | |
process to avoid race conditions. | |
save_function (`Callable`): | |
The function to use to save the state dictionary. Useful during distributed training when you need to | |
replace `torch.save` with another method. Can be configured with the environment variable | |
`DIFFUSERS_SAVE_MODE`. | |
safe_serialization (`bool`, *optional*, defaults to `True`): | |
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. | |
variant (`str`, *optional*): | |
If specified, weights are saved in the format `pytorch_model.<variant>.bin`. | |
max_shard_size (`int` or `str`, defaults to `"10GB"`): | |
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size | |
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`). | |
If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain | |
period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`. | |
This is to establish a common default size for this argument across different libraries in the Hugging | |
Face ecosystem (`transformers`, and `accelerate`, for example). | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the | |
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your | |
namespace). | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. | |
""" | |
if os.path.isfile(save_directory): | |
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") | |
return | |
weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME | |
weights_name = _add_variant(weights_name, variant) | |
weight_name_split = weights_name.split(".") | |
if len(weight_name_split) in [2, 3]: | |
weights_name_pattern = weight_name_split[0] + "{suffix}." + ".".join(weight_name_split[1:]) | |
else: | |
raise ValueError(f"Invalid {weights_name} provided.") | |
os.makedirs(save_directory, exist_ok=True) | |
if push_to_hub: | |
commit_message = kwargs.pop("commit_message", None) | |
private = kwargs.pop("private", False) | |
create_pr = kwargs.pop("create_pr", False) | |
token = kwargs.pop("token", None) | |
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) | |
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id | |
# Only save the model itself if we are using distributed training | |
model_to_save = self | |
# Attach architecture to the config | |
# Save the config | |
if is_main_process: | |
model_to_save.save_config(save_directory) | |
# Save the model | |
state_dict = model_to_save.state_dict() | |
# Save the model | |
state_dict_split = split_torch_state_dict_into_shards( | |
state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern | |
) | |
# Clean the folder from a previous save | |
if is_main_process: | |
for filename in os.listdir(save_directory): | |
if filename in state_dict_split.filename_to_tensors.keys(): | |
continue | |
full_filename = os.path.join(save_directory, filename) | |
if not os.path.isfile(full_filename): | |
continue | |
weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "") | |
weights_without_ext = weights_without_ext.replace("{suffix}", "") | |
filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "") | |
# make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005 | |
if ( | |
filename.startswith(weights_without_ext) | |
and _REGEX_SHARD.fullmatch(filename_without_ext) is not None | |
): | |
os.remove(full_filename) | |
for filename, tensors in state_dict_split.filename_to_tensors.items(): | |
shard = {tensor: state_dict[tensor] for tensor in tensors} | |
filepath = os.path.join(save_directory, filename) | |
if safe_serialization: | |
# At some point we will need to deal better with save_function (used for TPU and other distributed | |
# joyfulness), but for now this enough. | |
safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"}) | |
else: | |
torch.save(shard, filepath) | |
if state_dict_split.is_sharded: | |
index = { | |
"metadata": state_dict_split.metadata, | |
"weight_map": state_dict_split.tensor_to_filename, | |
} | |
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME | |
save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant)) | |
# Save the index as well | |
with open(save_index_file, "w", encoding="utf-8") as f: | |
content = json.dumps(index, indent=2, sort_keys=True) + "\n" | |
f.write(content) | |
logger.info( | |
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be " | |
f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the " | |
f"index located at {save_index_file}." | |
) | |
else: | |
path_to_weights = os.path.join(save_directory, weights_name) | |
logger.info(f"Model weights saved in {path_to_weights}") | |
if push_to_hub: | |
# Create a new empty model card and eventually tag it | |
model_card = load_or_create_model_card(repo_id, token=token) | |
model_card = populate_model_card(model_card) | |
model_card.save(Path(save_directory, "README.md").as_posix()) | |
self._upload_folder( | |
save_directory, | |
repo_id, | |
token=token, | |
commit_message=commit_message, | |
create_pr=create_pr, | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
r""" | |
Instantiate a pretrained PyTorch model from a pretrained model configuration. | |
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To | |
train the model, set it back in training mode with `model.train()`. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`~ModelMixin.save_pretrained`]. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info (`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
from_flax (`bool`, *optional*, defaults to `False`): | |
Load the model weights from a Flax checkpoint save file. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
mirror (`str`, *optional*): | |
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not | |
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
information. | |
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
A map that specifies where each submodule should go. It doesn't need to be defined for each | |
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
same device. Defaults to `None`, meaning that the model will be loaded on CPU. | |
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
more information about each option see [designing a device | |
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
max_memory (`Dict`, *optional*): | |
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
each GPU and the available CPU RAM if unset. | |
offload_folder (`str` or `os.PathLike`, *optional*): | |
The path to offload weights if `device_map` contains the value `"disk"`. | |
offload_state_dict (`bool`, *optional*): | |
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
when there is some disk offload. | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
argument to `True` will raise an error. | |
variant (`str`, *optional*): | |
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when | |
loading `from_flax`. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the | |
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors` | |
weights. If set to `False`, `safetensors` weights are not loaded. | |
<Tip> | |
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with | |
`huggingface-cli login`. You can also activate the special | |
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a | |
firewalled environment. | |
</Tip> | |
Example: | |
```py | |
from diffusers import UNet2DConditionModel | |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") | |
``` | |
If you get the error message below, you need to finetune the weights for your downstream task: | |
```bash | |
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
``` | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
force_download = kwargs.pop("force_download", False) | |
from_flax = kwargs.pop("from_flax", False) | |
proxies = kwargs.pop("proxies", None) | |
output_loading_info = kwargs.pop("output_loading_info", False) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
subfolder = kwargs.pop("subfolder", None) | |
device_map = kwargs.pop("device_map", None) | |
max_memory = kwargs.pop("max_memory", None) | |
offload_folder = kwargs.pop("offload_folder", None) | |
offload_state_dict = kwargs.pop("offload_state_dict", False) | |
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) | |
variant = kwargs.pop("variant", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
allow_pickle = False | |
if use_safetensors is None: | |
use_safetensors = True | |
allow_pickle = True | |
if low_cpu_mem_usage and not is_accelerate_available(): | |
low_cpu_mem_usage = False | |
logger.warning( | |
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" | |
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" | |
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" | |
" install accelerate\n```\n." | |
) | |
if device_map is not None and not is_accelerate_available(): | |
raise NotImplementedError( | |
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" | |
" `device_map=None`. You can install accelerate with `pip install accelerate`." | |
) | |
# Check if we can handle device_map and dispatching the weights | |
if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `device_map=None`." | |
) | |
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `low_cpu_mem_usage=False`." | |
) | |
if low_cpu_mem_usage is False and device_map is not None: | |
raise ValueError( | |
f"You cannot set `low_cpu_mem_usage` to `False` while using device_map={device_map} for loading and" | |
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." | |
) | |
# change device_map into a map if we passed an int, a str or a torch.device | |
if isinstance(device_map, torch.device): | |
device_map = {"": device_map} | |
elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: | |
try: | |
device_map = {"": torch.device(device_map)} | |
except RuntimeError: | |
raise ValueError( | |
"When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or " | |
f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}." | |
) | |
elif isinstance(device_map, int): | |
if device_map < 0: | |
raise ValueError( | |
"You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' " | |
) | |
else: | |
device_map = {"": device_map} | |
if device_map is not None: | |
if low_cpu_mem_usage is None: | |
low_cpu_mem_usage = True | |
elif not low_cpu_mem_usage: | |
raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`") | |
if low_cpu_mem_usage: | |
if device_map is not None and not is_torch_version(">=", "1.10"): | |
# The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info. | |
raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.") | |
# Load config if we don't provide a configuration | |
config_path = pretrained_model_name_or_path | |
user_agent = { | |
"diffusers": __version__, | |
"file_type": "model", | |
"framework": "pytorch", | |
} | |
# load config | |
config, unused_kwargs, commit_hash = cls.load_config( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
return_commit_hash=True, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
**kwargs, | |
) | |
# Determine if we're loading from a directory of sharded checkpoints. | |
is_sharded = False | |
index_file = None | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
index_file = _fetch_index_file( | |
is_local=is_local, | |
pretrained_model_name_or_path=pretrained_model_name_or_path, | |
subfolder=subfolder or "", | |
use_safetensors=use_safetensors, | |
cache_dir=cache_dir, | |
variant=variant, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
if index_file is not None and index_file.is_file(): | |
is_sharded = True | |
if is_sharded and from_flax: | |
raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.") | |
# load model | |
model_file = None | |
if from_flax: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=FLAX_WEIGHTS_NAME, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
model = cls.from_config(config, **unused_kwargs) | |
# Convert the weights | |
from .modeling_pytorch_flax_utils import load_flax_checkpoint_in_pytorch_model | |
model = load_flax_checkpoint_in_pytorch_model(model, model_file) | |
else: | |
if is_sharded: | |
sharded_ckpt_cached_folder, sharded_metadata = _get_checkpoint_shard_files( | |
pretrained_model_name_or_path, | |
index_file, | |
cache_dir=cache_dir, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
revision=revision, | |
subfolder=subfolder or "", | |
) | |
elif use_safetensors and not is_sharded: | |
try: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
except IOError as e: | |
logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}") | |
if not allow_pickle: | |
raise | |
logger.warning( | |
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead." | |
) | |
if model_file is None and not is_sharded: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
if low_cpu_mem_usage: | |
# Instantiate model with empty weights | |
with accelerate.init_empty_weights(): | |
model = cls.from_config(config, **unused_kwargs) | |
# if device_map is None, load the state dict and move the params from meta device to the cpu | |
if device_map is None and not is_sharded: | |
param_device = "cpu" | |
state_dict = load_state_dict(model_file, variant=variant) | |
model._convert_deprecated_attention_blocks(state_dict) | |
# move the params from meta device to cpu | |
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
if len(missing_keys) > 0: | |
raise ValueError( | |
f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are" | |
f" missing: \n {', '.join(missing_keys)}. \n Please make sure to pass" | |
" `low_cpu_mem_usage=False` and `device_map=None` if you want to randomly initialize" | |
" those weights or else make sure your checkpoint file is correct." | |
) | |
unexpected_keys = load_model_dict_into_meta( | |
model, | |
state_dict, | |
device=param_device, | |
dtype=torch_dtype, | |
model_name_or_path=pretrained_model_name_or_path, | |
) | |
if cls._keys_to_ignore_on_load_unexpected is not None: | |
for pat in cls._keys_to_ignore_on_load_unexpected: | |
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" | |
) | |
else: # else let accelerate handle loading and dispatching. | |
# Load weights and dispatch according to the device_map | |
# by default the device_map is None and the weights are loaded on the CPU | |
force_hook = True | |
device_map = _determine_device_map(model, device_map, max_memory, torch_dtype) | |
if device_map is None and is_sharded: | |
# we load the parameters on the cpu | |
device_map = {"": "cpu"} | |
force_hook = False | |
try: | |
accelerate.load_checkpoint_and_dispatch( | |
model, | |
model_file if not is_sharded else index_file, | |
device_map, | |
max_memory=max_memory, | |
offload_folder=offload_folder, | |
offload_state_dict=offload_state_dict, | |
dtype=torch_dtype, | |
force_hooks=force_hook, | |
strict=True, | |
) | |
except AttributeError as e: | |
# When using accelerate loading, we do not have the ability to load the state | |
# dict and rename the weight names manually. Additionally, accelerate skips | |
# torch loading conventions and directly writes into `module.{_buffers, _parameters}` | |
# (which look like they should be private variables?), so we can't use the standard hooks | |
# to rename parameters on load. We need to mimic the original weight names so the correct | |
# attributes are available. After we have loaded the weights, we convert the deprecated | |
# names to the new non-deprecated names. Then we _greatly encourage_ the user to convert | |
# the weights so we don't have to do this again. | |
if "'Attention' object has no attribute" in str(e): | |
logger.warning( | |
f"Taking `{str(e)}` while using `accelerate.load_checkpoint_and_dispatch` to mean {pretrained_model_name_or_path}" | |
" was saved with deprecated attention block weight names. We will load it with the deprecated attention block" | |
" names and convert them on the fly to the new attention block format. Please re-save the model after this conversion," | |
" so we don't have to do the on the fly renaming in the future. If the model is from a hub checkpoint," | |
" please also re-upload it or open a PR on the original repository." | |
) | |
model._temp_convert_self_to_deprecated_attention_blocks() | |
accelerate.load_checkpoint_and_dispatch( | |
model, | |
model_file if not is_sharded else index_file, | |
device_map, | |
max_memory=max_memory, | |
offload_folder=offload_folder, | |
offload_state_dict=offload_state_dict, | |
dtype=torch_dtype, | |
force_hooks=force_hook, | |
strict=True, | |
) | |
model._undo_temp_convert_self_to_deprecated_attention_blocks() | |
else: | |
raise e | |
loading_info = { | |
"missing_keys": [], | |
"unexpected_keys": [], | |
"mismatched_keys": [], | |
"error_msgs": [], | |
} | |
else: | |
model = cls.from_config(config, **unused_kwargs) | |
state_dict = load_state_dict(model_file, variant=variant) | |
model._convert_deprecated_attention_blocks(state_dict) | |
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model( | |
model, | |
state_dict, | |
model_file, | |
pretrained_model_name_or_path, | |
ignore_mismatched_sizes=ignore_mismatched_sizes, | |
) | |
loading_info = { | |
"missing_keys": missing_keys, | |
"unexpected_keys": unexpected_keys, | |
"mismatched_keys": mismatched_keys, | |
"error_msgs": error_msgs, | |
} | |
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
) | |
elif torch_dtype is not None: | |
model = model.to(torch_dtype) | |
model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
# Set model in evaluation mode to deactivate DropOut modules by default | |
model.eval() | |
if output_loading_info: | |
return model, loading_info | |
return model | |
def _load_pretrained_model( | |
cls, | |
model, | |
state_dict: OrderedDict, | |
resolved_archive_file, | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
ignore_mismatched_sizes: bool = False, | |
): | |
# Retrieve missing & unexpected_keys | |
model_state_dict = model.state_dict() | |
loaded_keys = list(state_dict.keys()) | |
expected_keys = list(model_state_dict.keys()) | |
original_loaded_keys = loaded_keys | |
missing_keys = list(set(expected_keys) - set(loaded_keys)) | |
unexpected_keys = list(set(loaded_keys) - set(expected_keys)) | |
# Make sure we are able to load base models as well as derived models (with heads) | |
model_to_load = model | |
def _find_mismatched_keys( | |
state_dict, | |
model_state_dict, | |
loaded_keys, | |
ignore_mismatched_sizes, | |
): | |
mismatched_keys = [] | |
if ignore_mismatched_sizes: | |
for checkpoint_key in loaded_keys: | |
model_key = checkpoint_key | |
if ( | |
model_key in model_state_dict | |
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape | |
): | |
mismatched_keys.append( | |
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) | |
) | |
del state_dict[checkpoint_key] | |
return mismatched_keys | |
if state_dict is not None: | |
# Whole checkpoint | |
mismatched_keys = _find_mismatched_keys( | |
state_dict, | |
model_state_dict, | |
original_loaded_keys, | |
ignore_mismatched_sizes, | |
) | |
error_msgs = _load_state_dict_into_model(model_to_load, state_dict) | |
if len(error_msgs) > 0: | |
error_msg = "\n\t".join(error_msgs) | |
if "size mismatch" in error_msg: | |
error_msg += ( | |
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." | |
) | |
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" | |
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" | |
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task" | |
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a" | |
" BertForPreTraining model).\n- This IS NOT expected if you are initializing" | |
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly" | |
" identical (initializing a BertForSequenceClassification model from a" | |
" BertForSequenceClassification model)." | |
) | |
else: | |
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") | |
if len(missing_keys) > 0: | |
logger.warning( | |
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" | |
" TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
) | |
elif len(mismatched_keys) == 0: | |
logger.info( | |
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the" | |
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions" | |
" without further training." | |
) | |
if len(mismatched_keys) > 0: | |
mismatched_warning = "\n".join( | |
[ | |
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" | |
for key, shape1, shape2 in mismatched_keys | |
] | |
) | |
logger.warning( | |
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" | |
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be" | |
" able to use it for predictions and inference." | |
) | |
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs | |
def _get_signature_keys(cls, obj): | |
parameters = inspect.signature(obj.__init__).parameters | |
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} | |
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) | |
expected_modules = set(required_parameters.keys()) - {"self"} | |
return expected_modules, optional_parameters | |
# Adapted from `transformers` modeling_utils.py | |
def _get_no_split_modules(self, device_map: str): | |
""" | |
Get the modules of the model that should not be spit when using device_map. We iterate through the modules to | |
get the underlying `_no_split_modules`. | |
Args: | |
device_map (`str`): | |
The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"] | |
Returns: | |
`List[str]`: List of modules that should not be split | |
""" | |
_no_split_modules = set() | |
modules_to_check = [self] | |
while len(modules_to_check) > 0: | |
module = modules_to_check.pop(-1) | |
# if the module does not appear in _no_split_modules, we also check the children | |
if module.__class__.__name__ not in _no_split_modules: | |
if isinstance(module, ModelMixin): | |
if module._no_split_modules is None: | |
raise ValueError( | |
f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model " | |
"class needs to implement the `_no_split_modules` attribute." | |
) | |
else: | |
_no_split_modules = _no_split_modules | set(module._no_split_modules) | |
modules_to_check += list(module.children()) | |
return list(_no_split_modules) | |
def device(self) -> torch.device: | |
""" | |
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same | |
device). | |
""" | |
return get_parameter_device(self) | |
def dtype(self) -> torch.dtype: | |
""" | |
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). | |
""" | |
return get_parameter_dtype(self) | |
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int: | |
""" | |
Get number of (trainable or non-embedding) parameters in the module. | |
Args: | |
only_trainable (`bool`, *optional*, defaults to `False`): | |
Whether or not to return only the number of trainable parameters. | |
exclude_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether or not to return only the number of non-embedding parameters. | |
Returns: | |
`int`: The number of parameters. | |
Example: | |
```py | |
from diffusers import UNet2DConditionModel | |
model_id = "runwayml/stable-diffusion-v1-5" | |
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet") | |
unet.num_parameters(only_trainable=True) | |
859520964 | |
``` | |
""" | |
if exclude_embeddings: | |
embedding_param_names = [ | |
f"{name}.weight" | |
for name, module_type in self.named_modules() | |
if isinstance(module_type, torch.nn.Embedding) | |
] | |
non_embedding_parameters = [ | |
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names | |
] | |
return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable) | |
else: | |
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable) | |
def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None: | |
deprecated_attention_block_paths = [] | |
def recursive_find_attn_block(name, module): | |
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: | |
deprecated_attention_block_paths.append(name) | |
for sub_name, sub_module in module.named_children(): | |
sub_name = sub_name if name == "" else f"{name}.{sub_name}" | |
recursive_find_attn_block(sub_name, sub_module) | |
recursive_find_attn_block("", self) | |
# NOTE: we have to check if the deprecated parameters are in the state dict | |
# because it is possible we are loading from a state dict that was already | |
# converted | |
for path in deprecated_attention_block_paths: | |
# group_norm path stays the same | |
# query -> to_q | |
if f"{path}.query.weight" in state_dict: | |
state_dict[f"{path}.to_q.weight"] = state_dict.pop(f"{path}.query.weight") | |
if f"{path}.query.bias" in state_dict: | |
state_dict[f"{path}.to_q.bias"] = state_dict.pop(f"{path}.query.bias") | |
# key -> to_k | |
if f"{path}.key.weight" in state_dict: | |
state_dict[f"{path}.to_k.weight"] = state_dict.pop(f"{path}.key.weight") | |
if f"{path}.key.bias" in state_dict: | |
state_dict[f"{path}.to_k.bias"] = state_dict.pop(f"{path}.key.bias") | |
# value -> to_v | |
if f"{path}.value.weight" in state_dict: | |
state_dict[f"{path}.to_v.weight"] = state_dict.pop(f"{path}.value.weight") | |
if f"{path}.value.bias" in state_dict: | |
state_dict[f"{path}.to_v.bias"] = state_dict.pop(f"{path}.value.bias") | |
# proj_attn -> to_out.0 | |
if f"{path}.proj_attn.weight" in state_dict: | |
state_dict[f"{path}.to_out.0.weight"] = state_dict.pop(f"{path}.proj_attn.weight") | |
if f"{path}.proj_attn.bias" in state_dict: | |
state_dict[f"{path}.to_out.0.bias"] = state_dict.pop(f"{path}.proj_attn.bias") | |
def _temp_convert_self_to_deprecated_attention_blocks(self) -> None: | |
deprecated_attention_block_modules = [] | |
def recursive_find_attn_block(module): | |
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: | |
deprecated_attention_block_modules.append(module) | |
for sub_module in module.children(): | |
recursive_find_attn_block(sub_module) | |
recursive_find_attn_block(self) | |
for module in deprecated_attention_block_modules: | |
module.query = module.to_q | |
module.key = module.to_k | |
module.value = module.to_v | |
module.proj_attn = module.to_out[0] | |
# We don't _have_ to delete the old attributes, but it's helpful to ensure | |
# that _all_ the weights are loaded into the new attributes and we're not | |
# making an incorrect assumption that this model should be converted when | |
# it really shouldn't be. | |
del module.to_q | |
del module.to_k | |
del module.to_v | |
del module.to_out | |
def _undo_temp_convert_self_to_deprecated_attention_blocks(self) -> None: | |
deprecated_attention_block_modules = [] | |
def recursive_find_attn_block(module) -> None: | |
if hasattr(module, "_from_deprecated_attn_block") and module._from_deprecated_attn_block: | |
deprecated_attention_block_modules.append(module) | |
for sub_module in module.children(): | |
recursive_find_attn_block(sub_module) | |
recursive_find_attn_block(self) | |
for module in deprecated_attention_block_modules: | |
module.to_q = module.query | |
module.to_k = module.key | |
module.to_v = module.value | |
module.to_out = nn.ModuleList([module.proj_attn, nn.Dropout(module.dropout)]) | |
del module.query | |
del module.key | |
del module.value | |
del module.proj_attn | |
class LegacyModelMixin(ModelMixin): | |
r""" | |
A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more | |
pipeline-specific classes (like `DiTTransformer2DModel`). | |
""" | |
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
# To prevent dependency import problem. | |
from .model_loading_utils import _fetch_remapped_cls_from_config | |
# Create a copy of the kwargs so that we don't mess with the keyword arguments in the downstream calls. | |
kwargs_copy = kwargs.copy() | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", None) | |
# Load config if we don't provide a configuration | |
config_path = pretrained_model_name_or_path | |
user_agent = { | |
"diffusers": __version__, | |
"file_type": "model", | |
"framework": "pytorch", | |
} | |
# load config | |
config, _, _ = cls.load_config( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
return_commit_hash=True, | |
force_download=force_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
**kwargs, | |
) | |
# resolve remapping | |
remapped_class = _fetch_remapped_cls_from_config(config, cls) | |
return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy) | |