# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import is_peft_version, logging logger = logging.get_logger(__name__) def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", block_slice_pos=5): # 1. get all state_dict_keys all_keys = list(state_dict.keys()) sgm_patterns = ["input_blocks", "middle_block", "output_blocks"] # 2. check if needs remapping, if not return original dict is_in_sgm_format = False for key in all_keys: if any(p in key for p in sgm_patterns): is_in_sgm_format = True break if not is_in_sgm_format: return state_dict # 3. Else remap from SGM patterns new_state_dict = {} inner_block_map = ["resnets", "attentions", "upsamplers"] # Retrieves # of down, mid and up blocks input_block_ids, middle_block_ids, output_block_ids = set(), set(), set() for layer in all_keys: if "text" in layer: new_state_dict[layer] = state_dict.pop(layer) else: layer_id = int(layer.split(delimiter)[:block_slice_pos][-1]) if sgm_patterns[0] in layer: input_block_ids.add(layer_id) elif sgm_patterns[1] in layer: middle_block_ids.add(layer_id) elif sgm_patterns[2] in layer: output_block_ids.add(layer_id) else: raise ValueError(f"Checkpoint not supported because layer {layer} not supported.") input_blocks = { layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key] for layer_id in input_block_ids } middle_blocks = { layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key] for layer_id in middle_block_ids } output_blocks = { layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key] for layer_id in output_block_ids } # Rename keys accordingly for i in input_block_ids: block_id = (i - 1) // (unet_config.layers_per_block + 1) layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1) for key in input_blocks[i]: inner_block_id = int(key.split(delimiter)[block_slice_pos]) inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers" inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0" new_key = delimiter.join( key.split(delimiter)[: block_slice_pos - 1] + [str(block_id), inner_block_key, inner_layers_in_block] + key.split(delimiter)[block_slice_pos + 1 :] ) new_state_dict[new_key] = state_dict.pop(key) for i in middle_block_ids: key_part = None if i == 0: key_part = [inner_block_map[0], "0"] elif i == 1: key_part = [inner_block_map[1], "0"] elif i == 2: key_part = [inner_block_map[0], "1"] else: raise ValueError(f"Invalid middle block id {i}.") for key in middle_blocks[i]: new_key = delimiter.join( key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:] ) new_state_dict[new_key] = state_dict.pop(key) for i in output_block_ids: block_id = i // (unet_config.layers_per_block + 1) layer_in_block_id = i % (unet_config.layers_per_block + 1) for key in output_blocks[i]: inner_block_id = int(key.split(delimiter)[block_slice_pos]) inner_block_key = inner_block_map[inner_block_id] inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0" new_key = delimiter.join( key.split(delimiter)[: block_slice_pos - 1] + [str(block_id), inner_block_key, inner_layers_in_block] + key.split(delimiter)[block_slice_pos + 1 :] ) new_state_dict[new_key] = state_dict.pop(key) if len(state_dict) > 0: raise ValueError("At this point all state dict entries have to be converted.") return new_state_dict def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"): """ Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict. Args: state_dict (`dict`): The state dict to convert. unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet". text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to "text_encoder". Returns: `tuple`: A tuple containing the converted state dict and a dictionary of alphas. """ unet_state_dict = {} te_state_dict = {} te2_state_dict = {} network_alphas = {} # Check for DoRA-enabled LoRAs. dora_present_in_unet = any("dora_scale" in k and "lora_unet_" in k for k in state_dict) dora_present_in_te = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict) dora_present_in_te2 = any("dora_scale" in k and "lora_te2_" in k for k in state_dict) if dora_present_in_unet or dora_present_in_te or dora_present_in_te2: if is_peft_version("<", "0.9.0"): raise ValueError( "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." ) # Iterate over all LoRA weights. all_lora_keys = list(state_dict.keys()) for key in all_lora_keys: if not key.endswith("lora_down.weight"): continue # Extract LoRA name. lora_name = key.split(".")[0] # Find corresponding up weight and alpha. lora_name_up = lora_name + ".lora_up.weight" lora_name_alpha = lora_name + ".alpha" # Handle U-Net LoRAs. if lora_name.startswith("lora_unet_"): diffusers_name = _convert_unet_lora_key(key) # Store down and up weights. unet_state_dict[diffusers_name] = state_dict.pop(key) unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) # Store DoRA scale if present. if dora_present_in_unet: dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down." unet_state_dict[ diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.") ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) # Handle text encoder LoRAs. elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")): diffusers_name = _convert_text_encoder_lora_key(key, lora_name) # Store down and up weights for te or te2. if lora_name.startswith(("lora_te_", "lora_te1_")): te_state_dict[diffusers_name] = state_dict.pop(key) te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) else: te2_state_dict[diffusers_name] = state_dict.pop(key) te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) # Store DoRA scale if present. if dora_present_in_te or dora_present_in_te2: dora_scale_key_to_replace_te = ( "_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer." ) if lora_name.startswith(("lora_te_", "lora_te1_")): te_state_dict[ diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.") ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) elif lora_name.startswith("lora_te2_"): te2_state_dict[ diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.") ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) # Store alpha if present. if lora_name_alpha in state_dict: alpha = state_dict.pop(lora_name_alpha).item() network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha)) # Check if any keys remain. if len(state_dict) > 0: raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}") logger.info("Non-diffusers checkpoint detected.") # Construct final state dict. unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()} te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()} te2_state_dict = ( {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()} if len(te2_state_dict) > 0 else None ) if te2_state_dict is not None: te_state_dict.update(te2_state_dict) new_state_dict = {**unet_state_dict, **te_state_dict} return new_state_dict, network_alphas def _convert_unet_lora_key(key): """ Converts a U-Net LoRA key to a Diffusers compatible key. """ diffusers_name = key.replace("lora_unet_", "").replace("_", ".") # Replace common U-Net naming patterns. diffusers_name = diffusers_name.replace("input.blocks", "down_blocks") diffusers_name = diffusers_name.replace("down.blocks", "down_blocks") diffusers_name = diffusers_name.replace("middle.block", "mid_block") diffusers_name = diffusers_name.replace("mid.block", "mid_block") diffusers_name = diffusers_name.replace("output.blocks", "up_blocks") diffusers_name = diffusers_name.replace("up.blocks", "up_blocks") diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks") diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora") diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora") diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora") diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora") diffusers_name = diffusers_name.replace("proj.in", "proj_in") diffusers_name = diffusers_name.replace("proj.out", "proj_out") diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj") # SDXL specific conversions. if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name: pattern = r"\.\d+(?=\D*$)" diffusers_name = re.sub(pattern, "", diffusers_name, count=1) if ".in." in diffusers_name: diffusers_name = diffusers_name.replace("in.layers.2", "conv1") if ".out." in diffusers_name: diffusers_name = diffusers_name.replace("out.layers.3", "conv2") if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name: diffusers_name = diffusers_name.replace("op", "conv") if "skip" in diffusers_name: diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut") # LyCORIS specific conversions. if "time.emb.proj" in diffusers_name: diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj") if "conv.shortcut" in diffusers_name: diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut") # General conversions. if "transformer_blocks" in diffusers_name: if "attn1" in diffusers_name or "attn2" in diffusers_name: diffusers_name = diffusers_name.replace("attn1", "attn1.processor") diffusers_name = diffusers_name.replace("attn2", "attn2.processor") elif "ff" in diffusers_name: pass elif any(key in diffusers_name for key in ("proj_in", "proj_out")): pass else: pass return diffusers_name def _convert_text_encoder_lora_key(key, lora_name): """ Converts a text encoder LoRA key to a Diffusers compatible key. """ if lora_name.startswith(("lora_te_", "lora_te1_")): key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_" else: key_to_replace = "lora_te2_" diffusers_name = key.replace(key_to_replace, "").replace("_", ".") diffusers_name = diffusers_name.replace("text.model", "text_model") diffusers_name = diffusers_name.replace("self.attn", "self_attn") diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora") diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora") diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora") diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora") diffusers_name = diffusers_name.replace("text.projection", "text_projection") if "self_attn" in diffusers_name or "text_projection" in diffusers_name: pass elif "mlp" in diffusers_name: # Be aware that this is the new diffusers convention and the rest of the code might # not utilize it yet. diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.") return diffusers_name def _get_alpha_name(lora_name_alpha, diffusers_name, alpha): """ Gets the correct alpha name for the Diffusers model. """ if lora_name_alpha.startswith("lora_unet_"): prefix = "unet." elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")): prefix = "text_encoder." else: prefix = "text_encoder_2." new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha" return {new_name: alpha}