# Copyright 2024 the Latte Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.embeddings import PixArtAlphaTextProjection, get_1d_sincos_pos_embed_from_grid from ..attention import BasicTransformerBlock from ..embeddings import PatchEmbed from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import AdaLayerNormSingle class LatteTransformer3DModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True """ A 3D Transformer model for video-like data, paper: https://arxiv.org/abs/2401.03048, offical code: https://github.com/Vchitect/Latte Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input. out_channels (`int`, *optional*): The number of channels in the output. num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. attention_bias (`bool`, *optional*): Configure if the `TransformerBlocks` attention should contain a bias parameter. sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`, *optional*): The size of the patches to use in the patch embedding layer. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. num_embeds_ada_norm ( `int`, *optional*): The number of diffusion steps used during training. Pass if at least one of the norm_layers is `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. norm_type (`str`, *optional*, defaults to `"layer_norm"`): The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`. norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether or not to use elementwise affine in normalization layers. norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers. caption_channels (`int`, *optional*): The number of channels in the caption embeddings. video_length (`int`, *optional*): The number of frames in the video-like data. """ @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: int = 64, patch_size: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, norm_type: str = "layer_norm", norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, caption_channels: int = None, video_length: int = 16, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim # 1. Define input layers self.height = sample_size self.width = sample_size interpolation_scale = self.config.sample_size // 64 interpolation_scale = max(interpolation_scale, 1) self.pos_embed = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, interpolation_scale=interpolation_scale, ) # 2. Define spatial transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for d in range(num_layers) ] ) # 3. Define temporal transformers blocks self.temporal_transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=None, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for d in range(num_layers) ] ) # 4. Define output layers self.out_channels = in_channels if out_channels is None else out_channels self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) # 5. Latte other blocks. self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) # define temporal positional embedding temp_pos_embed = get_1d_sincos_pos_embed_from_grid( inner_dim, torch.arange(0, video_length).unsqueeze(1) ) # 1152 hidden size self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, enable_temporal_attentions: bool = True, return_dict: bool = True, ): """ The [`LatteTransformer3DModel`] forward method. Args: hidden_states shape `(batch size, channel, num_frame, height, width)`: Input `hidden_states`. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batcheight, sequence_length)` True = keep, False = discard. * Bias `(batcheight, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. enable_temporal_attentions: (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # Reshape hidden states batch_size, channels, num_frame, height, width = hidden_states.shape # batch_size channels num_frame height width -> (batch_size * num_frame) channels height width hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width) # Input height, width = ( hidden_states.shape[-2] // self.config.patch_size, hidden_states.shape[-1] // self.config.patch_size, ) num_patches = height * width hidden_states = self.pos_embed(hidden_states) # alrady add positional embeddings added_cond_kwargs = {"resolution": None, "aspect_ratio": None} timestep, embedded_timestep = self.adaln_single( timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) # Prepare text embeddings for spatial block # batch_size num_tokens hidden_size -> (batch_size * num_frame) num_tokens hidden_size encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152 encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(num_frame, dim=0).view( -1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1] ) # Prepare timesteps for spatial and temporal block timestep_spatial = timestep.repeat_interleave(num_frame, dim=0).view(-1, timestep.shape[-1]) timestep_temp = timestep.repeat_interleave(num_patches, dim=0).view(-1, timestep.shape[-1]) # Spatial and temporal transformer blocks for i, (spatial_block, temp_block) in enumerate( zip(self.transformer_blocks, self.temporal_transformer_blocks) ): if self.training and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( spatial_block, hidden_states, None, # attention_mask encoder_hidden_states_spatial, encoder_attention_mask, timestep_spatial, None, # cross_attention_kwargs None, # class_labels use_reentrant=False, ) else: hidden_states = spatial_block( hidden_states, None, # attention_mask encoder_hidden_states_spatial, encoder_attention_mask, timestep_spatial, None, # cross_attention_kwargs None, # class_labels ) if enable_temporal_attentions: # (batch_size * num_frame) num_tokens hidden_size -> (batch_size * num_tokens) num_frame hidden_size hidden_states = hidden_states.reshape( batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] ).permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) if i == 0 and num_frame > 1: hidden_states = hidden_states + self.temp_pos_embed if self.training and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( temp_block, hidden_states, None, # attention_mask None, # encoder_hidden_states None, # encoder_attention_mask timestep_temp, None, # cross_attention_kwargs None, # class_labels use_reentrant=False, ) else: hidden_states = temp_block( hidden_states, None, # attention_mask None, # encoder_hidden_states None, # encoder_attention_mask timestep_temp, None, # cross_attention_kwargs None, # class_labels ) # (batch_size * num_tokens) num_frame hidden_size -> (batch_size * num_frame) num_tokens hidden_size hidden_states = hidden_states.reshape( batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] ).permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) embedded_timestep = embedded_timestep.repeat_interleave(num_frame, dim=0).view(-1, embedded_timestep.shape[-1]) shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) # unpatchify if self.adaln_single is None: height = width = int(hidden_states.shape[1] ** 0.5) hidden_states = hidden_states.reshape( shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size) ) output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute( 0, 2, 1, 3, 4 ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)