# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import inspect import re from contextlib import nullcontext from typing import Optional from huggingface_hub.utils import validate_hf_hub_args from ..utils import deprecate, is_accelerate_available, logging from .single_file_utils import ( SingleFileComponentError, convert_animatediff_checkpoint_to_diffusers, convert_controlnet_checkpoint, convert_flux_transformer_checkpoint_to_diffusers, convert_ldm_unet_checkpoint, convert_ldm_vae_checkpoint, convert_sd3_transformer_checkpoint_to_diffusers, convert_stable_cascade_unet_single_file_to_diffusers, create_controlnet_diffusers_config_from_ldm, create_unet_diffusers_config_from_ldm, create_vae_diffusers_config_from_ldm, fetch_diffusers_config, fetch_original_config, load_single_file_checkpoint, ) logger = logging.get_logger(__name__) if is_accelerate_available(): from accelerate import init_empty_weights from ..models.modeling_utils import load_model_dict_into_meta SINGLE_FILE_LOADABLE_CLASSES = { "StableCascadeUNet": { "checkpoint_mapping_fn": convert_stable_cascade_unet_single_file_to_diffusers, }, "UNet2DConditionModel": { "checkpoint_mapping_fn": convert_ldm_unet_checkpoint, "config_mapping_fn": create_unet_diffusers_config_from_ldm, "default_subfolder": "unet", "legacy_kwargs": { "num_in_channels": "in_channels", # Legacy kwargs supported by `from_single_file` mapped to new args }, }, "AutoencoderKL": { "checkpoint_mapping_fn": convert_ldm_vae_checkpoint, "config_mapping_fn": create_vae_diffusers_config_from_ldm, "default_subfolder": "vae", }, "ControlNetModel": { "checkpoint_mapping_fn": convert_controlnet_checkpoint, "config_mapping_fn": create_controlnet_diffusers_config_from_ldm, }, "SD3Transformer2DModel": { "checkpoint_mapping_fn": convert_sd3_transformer_checkpoint_to_diffusers, "default_subfolder": "transformer", }, "MotionAdapter": { "checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers, }, "SparseControlNetModel": { "checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers, }, "FluxTransformer2DModel": { "checkpoint_mapping_fn": convert_flux_transformer_checkpoint_to_diffusers, "default_subfolder": "transformer", }, } def _get_single_file_loadable_mapping_class(cls): diffusers_module = importlib.import_module(__name__.split(".")[0]) for loadable_class_str in SINGLE_FILE_LOADABLE_CLASSES: loadable_class = getattr(diffusers_module, loadable_class_str) if issubclass(cls, loadable_class): return loadable_class_str return None def _get_mapping_function_kwargs(mapping_fn, **kwargs): parameters = inspect.signature(mapping_fn).parameters mapping_kwargs = {} for parameter in parameters: if parameter in kwargs: mapping_kwargs[parameter] = kwargs[parameter] return mapping_kwargs class FromOriginalModelMixin: """ Load pretrained weights saved in the `.ckpt` or `.safetensors` format into a model. """ @classmethod @validate_hf_hub_args def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str] = None, **kwargs): r""" Instantiate a model from pretrained weights saved in the original `.ckpt` or `.safetensors` format. The model is set in evaluation mode (`model.eval()`) by default. Parameters: pretrained_model_link_or_path_or_dict (`str`, *optional*): Can be either: - A link to the `.safetensors` or `.ckpt` file (for example `"https://huggingface.co//blob/main/.safetensors"`) on the Hub. - A path to a local *file* containing the weights of the component model. - A state dict containing the component model weights. config (`str`, *optional*): - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline hosted on the Hub. - A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline component configs in Diffusers format. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. original_config (`str`, *optional*): Dict or path to a yaml file containing the configuration for the model in its original format. If a dict is provided, it will be used to initialize the model configuration. torch_dtype (`str` or `torch.dtype`, *optional*): Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the dtype is automatically derived from the model's weights. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to True, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to overwrite load and saveable variables (for example the pipeline components of the specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` method. See example below for more information. ```py >>> from diffusers import StableCascadeUNet >>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors" >>> model = StableCascadeUNet.from_single_file(ckpt_path) ``` """ mapping_class_name = _get_single_file_loadable_mapping_class(cls) # if class_name not in SINGLE_FILE_LOADABLE_CLASSES: if mapping_class_name is None: raise ValueError( f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}" ) pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None) if pretrained_model_link_or_path is not None: deprecation_message = ( "Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes" ) deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message) pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path config = kwargs.pop("config", None) original_config = kwargs.pop("original_config", None) if config is not None and original_config is not None: raise ValueError( "`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments" ) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) cache_dir = kwargs.pop("cache_dir", None) local_files_only = kwargs.pop("local_files_only", None) subfolder = kwargs.pop("subfolder", None) revision = kwargs.pop("revision", None) torch_dtype = kwargs.pop("torch_dtype", None) if isinstance(pretrained_model_link_or_path_or_dict, dict): checkpoint = pretrained_model_link_or_path_or_dict else: checkpoint = load_single_file_checkpoint( pretrained_model_link_or_path_or_dict, force_download=force_download, proxies=proxies, token=token, cache_dir=cache_dir, local_files_only=local_files_only, revision=revision, ) mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[mapping_class_name] checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"] if original_config: if "config_mapping_fn" in mapping_functions: config_mapping_fn = mapping_functions["config_mapping_fn"] else: config_mapping_fn = None if config_mapping_fn is None: raise ValueError( ( f"`original_config` has been provided for {mapping_class_name} but no mapping function" "was found to convert the original config to a Diffusers config in" "`diffusers.loaders.single_file_utils`" ) ) if isinstance(original_config, str): # If original_config is a URL or filepath fetch the original_config dict original_config = fetch_original_config(original_config, local_files_only=local_files_only) config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs) diffusers_model_config = config_mapping_fn( original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs ) else: if config: if isinstance(config, str): default_pretrained_model_config_name = config else: raise ValueError( ( "Invalid `config` argument. Please provide a string representing a repo id" "or path to a local Diffusers model repo." ) ) else: config = fetch_diffusers_config(checkpoint) default_pretrained_model_config_name = config["pretrained_model_name_or_path"] if "default_subfolder" in mapping_functions: subfolder = mapping_functions["default_subfolder"] subfolder = subfolder or config.pop( "subfolder", None ) # some configs contain a subfolder key, e.g. StableCascadeUNet diffusers_model_config = cls.load_config( pretrained_model_name_or_path=default_pretrained_model_config_name, subfolder=subfolder, local_files_only=local_files_only, ) expected_kwargs, optional_kwargs = cls._get_signature_keys(cls) # Map legacy kwargs to new kwargs if "legacy_kwargs" in mapping_functions: legacy_kwargs = mapping_functions["legacy_kwargs"] for legacy_key, new_key in legacy_kwargs.items(): if legacy_key in kwargs: kwargs[new_key] = kwargs.pop(legacy_key) model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs} diffusers_model_config.update(model_kwargs) checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs) diffusers_format_checkpoint = checkpoint_mapping_fn( config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs ) if not diffusers_format_checkpoint: raise SingleFileComponentError( f"Failed to load {mapping_class_name}. Weights for this component appear to be missing in the checkpoint." ) ctx = init_empty_weights if is_accelerate_available() else nullcontext with ctx(): model = cls.from_config(diffusers_model_config) if is_accelerate_available(): unexpected_keys = load_model_dict_into_meta(model, diffusers_format_checkpoint, dtype=torch_dtype) else: _, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False) if model._keys_to_ignore_on_load_unexpected is not None: for pat in model._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}" ) if torch_dtype is not None: model.to(torch_dtype) model.eval() return model