# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Adapted from https://github.com/huggingface/transformers/blob/c409cd81777fb27aadc043ed3d8339dbc020fb3b/src/transformers/quantizers/quantizer_bnb_4bit.py """ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union from ...utils import get_module_from_name from ..base import DiffusersQuantizer if TYPE_CHECKING: from ...models.modeling_utils import ModelMixin from ...utils import ( is_accelerate_available, is_accelerate_version, is_bitsandbytes_available, is_bitsandbytes_version, is_torch_available, logging, ) if is_torch_available(): import torch logger = logging.get_logger(__name__) class BnB4BitDiffusersQuantizer(DiffusersQuantizer): """ 4-bit quantization from bitsandbytes.py quantization method: before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call saving: from state dict, as usual; saves weights and `quant_state` components loading: need to locate `quant_state` components and pass to Param4bit constructor """ use_keep_in_fp32_modules = True requires_calibration = False def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) if self.quantization_config.llm_int8_skip_modules is not None: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules def validate_environment(self, *args, **kwargs): if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for quantization.") if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): raise ImportError( "Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`" ) if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"): raise ImportError( "Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" ) if kwargs.get("from_flax", False): raise ValueError( "Converting into 4-bit weights from flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) device_map = kwargs.get("device_map", None) if ( device_map is not None and isinstance(device_map, dict) and not self.quantization_config.llm_int8_enable_fp32_cpu_offload ): device_map_without_no_convert = { key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert } if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values(): raise ValueError( "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " "quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " "in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to " "`from_pretrained`. Check " "https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " "for more details. " ) def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if target_dtype != torch.int8: from accelerate.utils import CustomDtype logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization") return CustomDtype.INT4 else: raise ValueError(f"Wrong `target_dtype` ({target_dtype}) provided.") def check_if_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit): # Add here check for loaded components' dtypes once serialization is implemented return True elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias": # bias could be loaded by regular set_module_tensor_to_device() from accelerate, # but it would wrongly use uninitialized weight there. return True else: return False def create_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") old_value = getattr(module, tensor_name) if tensor_name == "bias": if param_value is None: new_value = old_value.to(target_device) else: new_value = param_value.to(target_device) new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad) module._parameters[tensor_name] = new_value return if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit): raise ValueError("this function only loads `Linear4bit components`") if ( old_value.device == torch.device("meta") and target_device not in ["meta", torch.device("meta")] and param_value is None ): raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") # construct `new_value` for the module._parameters[tensor_name]: if self.pre_quantized: # 4bit loading. Collecting components for restoring quantized weight # This can be expanded to make a universal call for any quantized weight loading if not self.is_serializable: raise ValueError( "Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and ( param_name + ".quant_state.bitsandbytes__nf4" not in state_dict ): raise ValueError( f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components." ) quantized_stats = {} for k, v in state_dict.items(): # `startswith` to counter for edge cases where `param_name` # substring can be present in multiple places in the `state_dict` if param_name + "." in k and k.startswith(param_name): quantized_stats[k] = v if unexpected_keys is not None and k in unexpected_keys: unexpected_keys.remove(k) new_value = bnb.nn.Params4bit.from_prequantized( data=param_value, quantized_stats=quantized_stats, requires_grad=False, device=target_device, ) else: new_value = param_value.to("cpu") kwargs = old_value.__dict__ new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device) module._parameters[tensor_name] = new_value def check_quantized_param_shape(self, param_name, current_param_shape, loaded_param_shape): n = current_param_shape.numel() inferred_shape = (n,) if "bias" in param_name else ((n + 1) // 2, 1) if loaded_param_shape != inferred_shape: raise ValueError( f"Expected the flattened shape of the current param ({param_name}) to be {loaded_param_shape} but is {inferred_shape}." ) else: return True def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) torch_dtype = torch.float16 return torch_dtype # (sayakpaul): I think it could be better to disable custom `device_map`s # for the first phase of the integration in the interest of simplicity. # Commenting this for discussions on the PR. # def update_device_map(self, device_map): # if device_map is None: # device_map = {"": torch.cuda.current_device()} # logger.info( # "The device_map was not initialized. " # "Setting device_map to {'':torch.cuda.current_device()}. " # "If you want to use the model for inference, please set device_map ='auto' " # ) # return device_map def _process_model_before_weight_loading( self, model: "ModelMixin", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): from .utils import replace_with_bnb_linear load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload # We may keep some modules such as the `proj_out` in their original dtype for numerical stability reasons self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] self.modules_to_not_convert.extend(keep_in_fp32_modules) # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: raise ValueError( "If you want to offload some keys to `cpu` or `disk`, you need to set " "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " " converted to 8-bit but kept in 32-bit." ) self.modules_to_not_convert.extend(keys_on_cpu) # Purge `None`. # Unlike `transformers`, we don't know if we should always keep certain modules in FP32 # in case of diffusion transformer models. For language models and others alike, `lm_head` # and tied modules are usually kept in FP32. self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] model = replace_with_bnb_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): model.is_loaded_in_4bit = True model.is_4bit_serializable = self.is_serializable return model @property def is_serializable(self): # Because we're mandating `bitsandbytes` 0.43.3. return True @property def is_trainable(self) -> bool: # Because we're mandating `bitsandbytes` 0.43.3. return True def _dequantize(self, model): from .utils import dequantize_and_replace is_model_on_cpu = model.device.type == "cpu" if is_model_on_cpu: logger.info( "Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device." ) model.to(torch.cuda.current_device()) model = dequantize_and_replace( model, self.modules_to_not_convert, quantization_config=self.quantization_config ) if is_model_on_cpu: model.to("cpu") return model class BnB8BitDiffusersQuantizer(DiffusersQuantizer): """ 8-bit quantization from bitsandbytes quantization method: before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call saving: from state dict, as usual; saves weights and 'SCB' component loading: need to locate SCB component and pass to the Linear8bitLt object """ use_keep_in_fp32_modules = True requires_calibration = False def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) if self.quantization_config.llm_int8_skip_modules is not None: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules def validate_environment(self, *args, **kwargs): if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for quantization.") if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"): raise ImportError( "Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install 'accelerate>=0.26.0'`" ) if not is_bitsandbytes_available() or is_bitsandbytes_version("<", "0.43.3"): raise ImportError( "Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" ) if kwargs.get("from_flax", False): raise ValueError( "Converting into 8-bit weights from flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) device_map = kwargs.get("device_map", None) if ( device_map is not None and isinstance(device_map, dict) and not self.quantization_config.llm_int8_enable_fp32_cpu_offload ): device_map_without_no_convert = { key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert } if "cpu" in device_map_without_no_convert.values() or "disk" in device_map_without_no_convert.values(): raise ValueError( "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " "quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " "in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to " "`from_pretrained`. Check " "https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " "for more details. " ) # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.update_torch_dtype def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) torch_dtype = torch.float16 return torch_dtype # # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.update_device_map # def update_device_map(self, device_map): # if device_map is None: # device_map = {"": torch.cuda.current_device()} # logger.info( # "The device_map was not initialized. " # "Setting device_map to {'':torch.cuda.current_device()}. " # "If you want to use the model for inference, please set device_map ='auto' " # ) # return device_map def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if target_dtype != torch.int8: logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization") return torch.int8 def check_if_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params): if self.pre_quantized: if param_name.replace("weight", "SCB") not in state_dict.keys(): raise ValueError("Missing quantization component `SCB`") if param_value.dtype != torch.int8: raise ValueError( f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`." ) return True return False def create_quantized_param( self, model: "ModelMixin", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): import bitsandbytes as bnb fp16_statistics_key = param_name.replace("weight", "SCB") fp16_weights_format_key = param_name.replace("weight", "weight_format") fp16_statistics = state_dict.get(fp16_statistics_key, None) fp16_weights_format = state_dict.get(fp16_weights_format_key, None) module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") old_value = getattr(module, tensor_name) if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params): raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.") if ( old_value.device == torch.device("meta") and target_device not in ["meta", torch.device("meta")] and param_value is None ): raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.") new_value = param_value.to("cpu") if self.pre_quantized and not self.is_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) kwargs = old_value.__dict__ new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device) module._parameters[tensor_name] = new_value if fp16_statistics is not None: setattr(module.weight, "SCB", fp16_statistics.to(target_device)) if unexpected_keys is not None: unexpected_keys.remove(fp16_statistics_key) # We just need to pop the `weight_format` keys from the state dict to remove unneeded # messages. The correct format is correctly retrieved during the first forward pass. if fp16_weights_format is not None and unexpected_keys is not None: unexpected_keys.remove(fp16_weights_format_key) # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer._process_model_after_weight_loading with 4bit->8bit def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs): model.is_loaded_in_8bit = True model.is_8bit_serializable = self.is_serializable return model # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer._process_model_before_weight_loading def _process_model_before_weight_loading( self, model: "ModelMixin", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): from .utils import replace_with_bnb_linear load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload # We may keep some modules such as the `proj_out` in their original dtype for numerical stability reasons self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] self.modules_to_not_convert.extend(keep_in_fp32_modules) # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload: raise ValueError( "If you want to offload some keys to `cpu` or `disk`, you need to set " "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " " converted to 8-bit but kept in 32-bit." ) self.modules_to_not_convert.extend(keys_on_cpu) # Purge `None`. # Unlike `transformers`, we don't know if we should always keep certain modules in FP32 # in case of diffusion transformer models. For language models and others alike, `lm_head` # and tied modules are usually kept in FP32. self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None] model = replace_with_bnb_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) model.config.quantization_config = self.quantization_config @property # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.is_serializable def is_serializable(self): # Because we're mandating `bitsandbytes` 0.43.3. return True @property # Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.is_serializable def is_trainable(self) -> bool: # Because we're mandating `bitsandbytes` 0.43.3. return True def _dequantize(self, model): from .utils import dequantize_and_replace model = dequantize_and_replace( model, self.modules_to_not_convert, quantization_config=self.quantization_config ) return model