# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils.torch_utils import randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput class EDMDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): """ Implements DPMSolverMultistepScheduler in EDM formulation as presented in Karras et al. 2022 [1]. `EDMDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs. [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364 This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: sigma_min (`float`, *optional*, defaults to 0.002): Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable range is [0, 10]. sigma_max (`float`, *optional*, defaults to 80.0): Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable range is [0.2, 80.0]. sigma_data (`float`, *optional*, defaults to 0.5): The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1]. sigma_schedule (`str`, *optional*, defaults to `karras`): Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was incorporated in this model: https://huggingface.co/stabilityai/cosxl. num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. solver_order (`int`, defaults to 2): The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. dynamic_thresholding_ratio (`float`, defaults to 0.995): The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. sample_max_value (`float`, defaults to 1.0): The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `algorithm_type="dpmsolver++"`. algorithm_type (`str`, defaults to `dpmsolver++`): Algorithm type for the solver; can be `dpmsolver++` or `sde-dpmsolver++`. The `dpmsolver++` type implements the algorithms in the [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion. solver_type (`str`, defaults to `midpoint`): Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. lower_order_final (`bool`, defaults to `True`): Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. euler_at_final (`bool`, defaults to `False`): Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference steps, but sometimes may result in blurring. final_sigmas_type (`str`, defaults to `"zero"`): The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. """ _compatibles = [] order = 1 @register_to_config def __init__( self, sigma_min: float = 0.002, sigma_max: float = 80.0, sigma_data: float = 0.5, sigma_schedule: str = "karras", num_train_timesteps: int = 1000, prediction_type: str = "epsilon", rho: float = 7.0, solver_order: int = 2, thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, sample_max_value: float = 1.0, algorithm_type: str = "dpmsolver++", solver_type: str = "midpoint", lower_order_final: bool = True, euler_at_final: bool = False, final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min" ): # settings for DPM-Solver if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"]: if algorithm_type == "deis": self.register_to_config(algorithm_type="dpmsolver++") else: raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}") if solver_type not in ["midpoint", "heun"]: if solver_type in ["logrho", "bh1", "bh2"]: self.register_to_config(solver_type="midpoint") else: raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}") if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero": raise ValueError( f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead." ) ramp = torch.linspace(0, 1, num_train_timesteps) if sigma_schedule == "karras": sigmas = self._compute_karras_sigmas(ramp) elif sigma_schedule == "exponential": sigmas = self._compute_exponential_sigmas(ramp) self.timesteps = self.precondition_noise(sigmas) self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) # setable values self.num_inference_steps = None self.model_outputs = [None] * solver_order self.lower_order_nums = 0 self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication @property def init_noise_sigma(self): # standard deviation of the initial noise distribution return (self.config.sigma_max**2 + 1) ** 0.5 @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs def precondition_inputs(self, sample, sigma): c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5) scaled_sample = sample * c_in return scaled_sample # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_noise def precondition_noise(self, sigma): if not isinstance(sigma, torch.Tensor): sigma = torch.tensor([sigma]) c_noise = 0.25 * torch.log(sigma) return c_noise # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs def precondition_outputs(self, sample, model_output, sigma): sigma_data = self.config.sigma_data c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) if self.config.prediction_type == "epsilon": c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 elif self.config.prediction_type == "v_prediction": c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 else: raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.") denoised = c_skip * sample + c_out * model_output return denoised # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sample = self.precondition_inputs(sample, sigma) self.is_scale_input_called = True return sample def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps ramp = torch.linspace(0, 1, self.num_inference_steps) if self.config.sigma_schedule == "karras": sigmas = self._compute_karras_sigmas(ramp) elif self.config.sigma_schedule == "exponential": sigmas = self._compute_exponential_sigmas(ramp) sigmas = sigmas.to(dtype=torch.float32, device=device) self.timesteps = self.precondition_noise(sigmas) if self.config.final_sigmas_type == "sigma_min": sigma_last = self.config.sigma_min elif self.config.final_sigmas_type == "zero": sigma_last = 0 else: raise ValueError( f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" ) self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)]) self.model_outputs = [ None, ] * self.config.solver_order self.lower_order_nums = 0 # add an index counter for schedulers that allow duplicated timesteps self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: """Constructs the noise schedule of Karras et al. (2022).""" sigma_min = sigma_min or self.config.sigma_min sigma_max = sigma_max or self.config.sigma_max rho = self.config.rho min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: """Implementation closely follows k-diffusion. https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26 """ sigma_min = sigma_min or self.config.sigma_min sigma_max = sigma_max or self.config.sigma_max sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) return sigmas # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, *remaining_dims = sample.shape if dtype not in (torch.float32, torch.float64): sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, *remaining_dims) sample = sample.to(dtype) return sample # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t def _sigma_to_alpha_sigma_t(self, sigma): alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1 sigma_t = sigma return alpha_t, sigma_t def convert_model_output( self, model_output: torch.Tensor, sample: torch.Tensor = None, ) -> torch.Tensor: """ Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an integral of the data prediction model. The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise prediction and data prediction models. Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. Returns: `torch.Tensor`: The converted model output. """ sigma = self.sigmas[self.step_index] x0_pred = self.precondition_outputs(sample, model_output, sigma) if self.config.thresholding: x0_pred = self._threshold_sample(x0_pred) return x0_pred def dpm_solver_first_order_update( self, model_output: torch.Tensor, sample: torch.Tensor = None, noise: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ One step for the first-order DPMSolver (equivalent to DDIM). Args: model_output (`torch.Tensor`): The direct output from the learned diffusion model. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. Returns: `torch.Tensor`: The sample tensor at the previous timestep. """ sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index] alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s = torch.log(alpha_s) - torch.log(sigma_s) h = lambda_t - lambda_s if self.config.algorithm_type == "dpmsolver++": x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output elif self.config.algorithm_type == "sde-dpmsolver++": assert noise is not None x_t = ( (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) return x_t def multistep_dpm_solver_second_order_update( self, model_output_list: List[torch.Tensor], sample: torch.Tensor = None, noise: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ One step for the second-order multistep DPMSolver. Args: model_output_list (`List[torch.Tensor]`): The direct outputs from learned diffusion model at current and latter timesteps. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. Returns: `torch.Tensor`: The sample tensor at the previous timestep. """ sigma_t, sigma_s0, sigma_s1 = ( self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1], ) alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) m0, m1 = model_output_list[-1], model_output_list[-2] h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 r0 = h_0 / h D0, D1 = m0, (1.0 / r0) * (m0 - m1) if self.config.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2211.01095 for detailed derivations if self.config.solver_type == "midpoint": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1 ) elif self.config.solver_type == "heun": x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 ) elif self.config.algorithm_type == "sde-dpmsolver++": assert noise is not None if self.config.solver_type == "midpoint": x_t = ( (sigma_t / sigma_s0 * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) elif self.config.solver_type == "heun": x_t = ( (sigma_t / sigma_s0 * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise ) return x_t def multistep_dpm_solver_third_order_update( self, model_output_list: List[torch.Tensor], sample: torch.Tensor = None, ) -> torch.Tensor: """ One step for the third-order multistep DPMSolver. Args: model_output_list (`List[torch.Tensor]`): The direct outputs from learned diffusion model at current and latter timesteps. sample (`torch.Tensor`): A current instance of a sample created by diffusion process. Returns: `torch.Tensor`: The sample tensor at the previous timestep. """ sigma_t, sigma_s0, sigma_s1, sigma_s2 = ( self.sigmas[self.step_index + 1], self.sigmas[self.step_index], self.sigmas[self.step_index - 1], self.sigmas[self.step_index - 2], ) alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2) m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 r0, r1 = h_0 / h, h_1 / h D0 = m0 D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) if self.config.algorithm_type == "dpmsolver++": # See https://arxiv.org/abs/2206.00927 for detailed derivations x_t = ( (sigma_t / sigma_s0) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * D0 + (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 - (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 ) return x_t # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps index_candidates = (schedule_timesteps == timestep).nonzero() if len(index_candidates) == 0: step_index = len(self.timesteps) - 1 # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) elif len(index_candidates) > 1: step_index = index_candidates[1].item() else: step_index = index_candidates[0].item() return step_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index def _init_step_index(self, timestep): """ Initialize the step_index counter for the scheduler. """ if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index def step( self, model_output: torch.Tensor, timestep: Union[int, torch.Tensor], sample: torch.Tensor, generator=None, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the multistep DPMSolver. Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if self.step_index is None: self._init_step_index(timestep) # Improve numerical stability for small number of steps lower_order_final = (self.step_index == len(self.timesteps) - 1) and ( self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15) or self.config.final_sigmas_type == "zero" ) lower_order_second = ( (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 ) model_output = self.convert_model_output(model_output, sample=sample) for i in range(self.config.solver_order - 1): self.model_outputs[i] = self.model_outputs[i + 1] self.model_outputs[-1] = model_output if self.config.algorithm_type == "sde-dpmsolver++": noise = randn_tensor( model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype ) else: noise = None if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) else: prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample) if self.lower_order_nums < self.config.solver_order: self.lower_order_nums += 1 # upon completion increase step index by one self._step_index += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ) -> torch.Tensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timesteps.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timesteps.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps