seed: 12345 # Super-resolution settings basesr: sf: 4 chopping: # for latent diffusion pch_size: 128 weight_type: Gaussian extra_bs: 8 # 16 ----> 26G memory # VAE settings tiled_vae: True latent_tiled_size: 128 sample_tiled_size: 1024 gradient_checkpointing_vae: True sliced_vae: False # classifer-free guidance cfg_scale: 1.0 # sampling settings start_timesteps: 200 # color fixing color_fix: ~ # Stable Diffusion base_model: sd-turbo sd_pipe: target: diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline enable_grad_checkpoint: True params: pretrained_model_name_or_path: stabilityai/sd-turbo use_safetensors: True torch_dtype: torch.float16 model_start: target: diffusers.models.autoencoders.NoisePredictor ckpt_path: ~ # For initializing params: in_channels: 3 down_block_types: - AttnDownBlock2D - AttnDownBlock2D up_block_types: - AttnUpBlock2D - AttnUpBlock2D block_out_channels: - 256 # 192, 256 - 512 # 384, 512 layers_per_block: - 3 - 3 act_fn: silu latent_channels: 4 norm_num_groups: 32 sample_size: 128 mid_block_add_attention: True resnet_time_scale_shift: default temb_channels: 512 attention_head_dim: 64 freq_shift: 0 flip_sin_to_cos: True double_z: True model_middle: target: diffusers.models.autoencoders.NoisePredictor params: in_channels: 3 down_block_types: - AttnDownBlock2D - AttnDownBlock2D up_block_types: - AttnUpBlock2D - AttnUpBlock2D block_out_channels: - 256 # 192, 256 - 512 # 384, 512 layers_per_block: - 3 - 3 act_fn: silu latent_channels: 4 norm_num_groups: 32 sample_size: 128 mid_block_add_attention: True resnet_time_scale_shift: default temb_channels: 512 attention_head_dim: 64 freq_shift: 0 flip_sin_to_cos: True double_z: True