#!/usr/bin/env python # -*- coding:utf-8 -*- # Power by Zongsheng Yue 2022-07-13 16:59:27 import os, sys, math, random import cv2 import numpy as np from pathlib import Path from loguru import logger from omegaconf import OmegaConf from utils import util_net from utils import util_image from utils import util_common from utils import util_color_fix import torch import torch.nn.functional as F import torch.distributed as dist import torch.multiprocessing as mp from datapipe.datasets import create_dataset from diffusers import StableDiffusionInvEnhancePipeline, AutoencoderKL _positive= 'Cinematic, high-contrast, photo-realistic, 8k, ultra HD, ' +\ 'meticulous detailing, hyper sharpness, perfect without deformations' _negative= 'Low quality, blurring, jpeg artifacts, deformed, over-smooth, cartoon, noisy,' +\ 'painting, drawing, sketch, oil painting' def get_torch_dtype(torch_dtype: str): if torch_dtype == 'torch.float16': return torch.float16 elif torch_dtype == 'torch.bfloat16': return torch.bfloat16 elif torch_dtype == 'torch.float32': return torch.float32 else: raise ValueError(f'Unexpected torch dtype:{torch_dtype}') class BaseSampler: def __init__(self, configs): ''' Input: configs: config, see the yaml file in folder ./configs/ configs.sampler_config.{start_timesteps, padding_mod, seed, sf, num_sample_steps} seed: int, random seed ''' self.configs = configs self.setup_seed() self.build_model() def setup_seed(self, seed=None): seed = self.configs.seed if seed is None else seed random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def write_log(self, log_str): print(log_str, flush=True) def build_model(self): # Build Stable diffusion params = dict(self.configs.sd_pipe.params) torch_dtype = params.pop('torch_dtype') params['torch_dtype'] = get_torch_dtype(torch_dtype) base_pipe = util_common.get_obj_from_str(self.configs.sd_pipe.target).from_pretrained(**params) if self.configs.get('scheduler', None) is not None: pipe_id = self.configs.scheduler.target.split('.')[-1] self.write_log(f'Loading scheduler of {pipe_id}...') base_pipe.scheduler = util_common.get_obj_from_str(self.configs.scheduler.target).from_config( base_pipe.scheduler.config ) self.write_log('Loaded Done') if self.configs.get('vae_fp16', None) is not None: params_vae = dict(self.configs.vae_fp16.params) torch_dtype = params_vae.pop('torch_dtype') params_vae['torch_dtype'] = get_torch_dtype(torch_dtype) pipe_id = self.configs.vae_fp16.params.pretrained_model_name_or_path self.write_log(f'Loading improved vae from {pipe_id}...') base_pipe.vae = util_common.get_obj_from_str(self.configs.vae_fp16.target).from_pretrained( **params_vae, ) self.write_log('Loaded Done') if self.configs.base_model in ['sd-turbo', 'sd2base'] : sd_pipe = StableDiffusionInvEnhancePipeline.from_pipe(base_pipe) else: raise ValueError(f"Unsupported base model: {self.configs.base_model}!") sd_pipe.to(f"cuda") if self.configs.sliced_vae: sd_pipe.vae.enable_slicing() if self.configs.tiled_vae: sd_pipe.vae.enable_tiling() sd_pipe.vae.tile_latent_min_size = self.configs.latent_tiled_size sd_pipe.vae.tile_sample_min_size = self.configs.sample_tiled_size if self.configs.gradient_checkpointing_vae: self.write_log(f"Activating gradient checkpoing for vae...") sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.encoder, True) sd_pipe.vae._set_gradient_checkpointing(sd_pipe.vae.decoder, True) model_configs = self.configs.model_start params = model_configs.get('params', dict) model_start = util_common.get_obj_from_str(model_configs.target)(**params) model_start.cuda() ckpt_path = model_configs.get('ckpt_path') assert ckpt_path is not None self.write_log(f"Loading started model from {ckpt_path}...") state = torch.load(ckpt_path, map_location=f"cuda") if 'state_dict' in state: state = state['state_dict'] util_net.reload_model(model_start, state) self.write_log(f"Loading Done") model_start.eval() setattr(sd_pipe, 'start_noise_predictor', model_start) self.sd_pipe = sd_pipe class InvSamplerSR(BaseSampler): @torch.no_grad() def sample_func(self, im_cond): ''' Input: im_cond: b x c x h x w, torch tensor, [0,1], RGB Output: xt: h x w x c, numpy array, [0,1], RGB ''' if self.configs.cfg_scale > 1.0: negative_prompt = [_negative,]*im_cond.shape[0] else: negative_prompt = None ori_h_lq, ori_w_lq = im_cond.shape[-2:] ori_w_hq = ori_w_lq * self.configs.basesr.sf ori_h_hq = ori_h_lq * self.configs.basesr.sf vae_sf = (2 ** (len(self.sd_pipe.vae.config.block_out_channels) - 1)) if hasattr(self.sd_pipe, 'unet'): diffusion_sf = (2 ** (len(self.sd_pipe.unet.config.block_out_channels) - 1)) else: diffusion_sf = self.sd_pipe.transformer.patch_size mod_lq = vae_sf // self.configs.basesr.sf * diffusion_sf idle_pch_size = self.configs.basesr.chopping.pch_size if min(im_cond.shape[-2:]) >= idle_pch_size: pad_h_up = pad_w_left = 0 else: while min(im_cond.shape[-2:]) < idle_pch_size: pad_h_up = max(min((idle_pch_size - im_cond.shape[-2]) // 2, im_cond.shape[-2]-1), 0) pad_h_down = max(min(idle_pch_size - im_cond.shape[-2] - pad_h_up, im_cond.shape[-2]-1), 0) pad_w_left = max(min((idle_pch_size - im_cond.shape[-1]) // 2, im_cond.shape[-1]-1), 0) pad_w_right = max(min(idle_pch_size - im_cond.shape[-1] - pad_w_left, im_cond.shape[-1]-1), 0) im_cond = F.pad(im_cond, pad=(pad_w_left, pad_w_right, pad_h_up, pad_h_down), mode='reflect') if im_cond.shape[-2] == idle_pch_size and im_cond.shape[-1] == idle_pch_size: target_size = ( im_cond.shape[-2] * self.configs.basesr.sf, im_cond.shape[-1] * self.configs.basesr.sf ) res_sr = self.sd_pipe( image=im_cond.type(torch.float16), prompt=[_positive, ]*im_cond.shape[0], negative_prompt=negative_prompt, target_size=target_size, timesteps=self.configs.timesteps, guidance_scale=self.configs.cfg_scale, output_type="pt", # torch tensor, b x c x h x w, [0, 1] ).images else: if not (im_cond.shape[-2] % mod_lq == 0 and im_cond.shape[-1] % mod_lq == 0): target_h_lq = math.ceil(im_cond.shape[-2] / mod_lq) * mod_lq target_w_lq = math.ceil(im_cond.shape[-1] / mod_lq) * mod_lq pad_h = target_h_lq - im_cond.shape[-2] pad_w = target_w_lq - im_cond.shape[-1] im_cond= F.pad(im_cond, pad=(0, pad_w, 0, pad_h), mode='reflect') im_spliter = util_image.ImageSpliterTh( im_cond, pch_size=idle_pch_size, stride= int(idle_pch_size * 0.50), sf=self.configs.basesr.sf, weight_type=self.configs.basesr.chopping.weight_type, extra_bs=1 if self.configs.bs > 1 else self.configs.bs, ) for im_lq_pch, index_infos in im_spliter: target_size = ( im_lq_pch.shape[-2] * self.configs.basesr.sf, im_lq_pch.shape[-1] * self.configs.basesr.sf, ) # start = torch.cuda.Event(enable_timing=True) # end = torch.cuda.Event(enable_timing=True) # start.record() res_sr_pch = self.sd_pipe( image=im_lq_pch.type(torch.float16), prompt=[_positive, ]*im_lq_pch.shape[0], negative_prompt=negative_prompt, target_size=target_size, timesteps=self.configs.timesteps, guidance_scale=self.configs.cfg_scale, output_type="pt", # torch tensor, b x c x h x w, [0, 1] ).images # end.record() # torch.cuda.synchronize() # print(f"Time: {start.elapsed_time(end):.6f}") im_spliter.update(res_sr_pch, index_infos) res_sr = im_spliter.gather() pad_h_up *= self.configs.basesr.sf pad_w_left *= self.configs.basesr.sf res_sr = res_sr[:, :, pad_h_up:ori_h_hq+pad_h_up, pad_w_left:ori_w_hq+pad_w_left] if self.configs.color_fix: im_cond_up = F.interpolate( im_cond, size=res_sr.shape[-2:], mode='bicubic', align_corners=False, antialias=True ) if self.configs.color_fix == 'ycbcr': res_sr = util_color_fix.ycbcr_color_replace(res_sr, im_cond_up) elif self.configs.color_fix == 'wavelet': res_sr = util_color_fix.wavelet_reconstruction(res_sr, im_cond_up) else: raise ValueError(f"Unsupported color fixing type: {self.configs.color_fix}") res_sr = res_sr.clamp(0.0, 1.0).cpu().permute(0,2,3,1).float().numpy() return res_sr def inference(self, in_path, out_path, bs=1): ''' Inference demo. Input: in_path: str, folder or image path for LQ image out_path: str, folder save the results bs: int, default bs=1, bs % num_gpus == 0 ''' in_path = Path(in_path) if not isinstance(in_path, Path) else in_path out_path = Path(out_path) if not isinstance(out_path, Path) else out_path if not out_path.exists(): out_path.mkdir(parents=True) if in_path.is_dir(): data_config = {'type': 'base', 'params': {'dir_path': str(in_path), 'transform_type': 'default', 'transform_kwargs': { 'mean': 0.0, 'std': 1.0, }, 'need_path': True, 'recursive': False, 'length': None, } } dataset = create_dataset(data_config) self.write_log(f'Find {len(dataset)} images in {in_path}') dataloader = torch.utils.data.DataLoader( dataset, batch_size=bs, shuffle=False, drop_last=False, ) for data in dataloader: res = self.sample_func(data['lq'].cuda()) for jj in range(res.shape[0]): im_name = Path(data['path'][jj]).stem save_path = str(out_path / f"{im_name}.png") util_image.imwrite(res[jj], save_path, dtype_in='float32') else: im_cond = util_image.imread(in_path, chn='rgb', dtype='float32') # h x w x c im_cond = util_image.img2tensor(im_cond).cuda() # 1 x c x h x w image = self.sample_func(im_cond).squeeze(0) save_path = str(out_path / f"{in_path.stem}.png") util_image.imwrite(image, save_path, dtype_in='float32') self.write_log(f"Processing done, enjoy the results in {str(out_path)}") if __name__ == '__main__': pass