# Copyright 2024 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import torch import torch.nn as nn from ...configuration_utils import ConfigMixin, register_to_config from ...utils import logging from ..attention import LuminaFeedForward from ..attention_processor import Attention, LuminaAttnProcessor2_0 from ..embeddings import ( LuminaCombinedTimestepCaptionEmbedding, LuminaPatchEmbed, ) from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm logger = logging.get_logger(__name__) # pylint: disable=invalid-name class LuminaNextDiTBlock(nn.Module): """ A LuminaNextDiTBlock for LuminaNextDiT2DModel. Parameters: dim (`int`): Embedding dimension of the input features. num_attention_heads (`int`): Number of attention heads. num_kv_heads (`int`): Number of attention heads in key and value features (if using GQA), or set to None for the same as query. multiple_of (`int`): The number of multiple of ffn layer. ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension. norm_eps (`float`): The eps for norm layer. qk_norm (`bool`): normalization for query and key. cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states. norm_elementwise_affine (`bool`, *optional*, defaults to True), """ def __init__( self, dim: int, num_attention_heads: int, num_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, qk_norm: bool, cross_attention_dim: int, norm_elementwise_affine: bool = True, ) -> None: super().__init__() self.head_dim = dim // num_attention_heads self.gate = nn.Parameter(torch.zeros([num_attention_heads])) # Self-attention self.attn1 = Attention( query_dim=dim, cross_attention_dim=None, dim_head=dim // num_attention_heads, qk_norm="layer_norm_across_heads" if qk_norm else None, heads=num_attention_heads, kv_heads=num_kv_heads, eps=1e-5, bias=False, out_bias=False, processor=LuminaAttnProcessor2_0(), ) self.attn1.to_out = nn.Identity() # Cross-attention self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, dim_head=dim // num_attention_heads, qk_norm="layer_norm_across_heads" if qk_norm else None, heads=num_attention_heads, kv_heads=num_kv_heads, eps=1e-5, bias=False, out_bias=False, processor=LuminaAttnProcessor2_0(), ) self.feed_forward = LuminaFeedForward( dim=dim, inner_dim=4 * dim, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, ) self.norm1 = LuminaRMSNormZero( embedding_dim=dim, norm_eps=norm_eps, norm_elementwise_affine=norm_elementwise_affine, ) self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, encoder_hidden_states: torch.Tensor, encoder_mask: torch.Tensor, temb: torch.Tensor, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): """ Perform a forward pass through the LuminaNextDiTBlock. Parameters: hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock. attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask. image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies. encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder. encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask. temb (`torch.Tensor`): Timestep embedding with text prompt embedding. cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention. """ residual = hidden_states # Self-attention norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) self_attn_output = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_hidden_states, attention_mask=attention_mask, query_rotary_emb=image_rotary_emb, key_rotary_emb=image_rotary_emb, **cross_attention_kwargs, ) # Cross-attention norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) cross_attn_output = self.attn2( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=encoder_mask, query_rotary_emb=image_rotary_emb, key_rotary_emb=None, **cross_attention_kwargs, ) cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1) mixed_attn_output = self_attn_output + cross_attn_output mixed_attn_output = mixed_attn_output.flatten(-2) # linear proj hidden_states = self.attn2.to_out[0](mixed_attn_output) hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states) mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) return hidden_states class LuminaNextDiT2DModel(ModelMixin, ConfigMixin): """ LuminaNextDiT: Diffusion model with a Transformer backbone. Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2): The size of each patch in the image. This parameter defines the resolution of patches fed into the model. in_channels (`int`, *optional*, defaults to 4): The number of input channels for the model. Typically, this matches the number of channels in the input images. hidden_size (`int`, *optional*, defaults to 4096): The dimensionality of the hidden layers in the model. This parameter determines the width of the model's hidden representations. num_layers (`int`, *optional*, default to 32): The number of layers in the model. This defines the depth of the neural network. num_attention_heads (`int`, *optional*, defaults to 32): The number of attention heads in each attention layer. This parameter specifies how many separate attention mechanisms are used. num_kv_heads (`int`, *optional*, defaults to 8): The number of key-value heads in the attention mechanism, if different from the number of attention heads. If None, it defaults to num_attention_heads. multiple_of (`int`, *optional*, defaults to 256): A factor that the hidden size should be a multiple of. This can help optimize certain hardware configurations. ffn_dim_multiplier (`float`, *optional*): A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on the model configuration. norm_eps (`float`, *optional*, defaults to 1e-5): A small value added to the denominator for numerical stability in normalization layers. learn_sigma (`bool`, *optional*, defaults to True): Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in predictions. qk_norm (`bool`, *optional*, defaults to True): Indicates if the queries and keys in the attention mechanism should be normalized. cross_attention_dim (`int`, *optional*, defaults to 2048): The dimensionality of the text embeddings. This parameter defines the size of the text representations used in the model. scaling_factor (`float`, *optional*, defaults to 1.0): A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the overall scale of the model's operations. """ @register_to_config def __init__( self, sample_size: int = 128, patch_size: Optional[int] = 2, in_channels: Optional[int] = 4, hidden_size: Optional[int] = 2304, num_layers: Optional[int] = 32, num_attention_heads: Optional[int] = 32, num_kv_heads: Optional[int] = None, multiple_of: Optional[int] = 256, ffn_dim_multiplier: Optional[float] = None, norm_eps: Optional[float] = 1e-5, learn_sigma: Optional[bool] = True, qk_norm: Optional[bool] = True, cross_attention_dim: Optional[int] = 2048, scaling_factor: Optional[float] = 1.0, ) -> None: super().__init__() self.sample_size = sample_size self.patch_size = patch_size self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.head_dim = hidden_size // num_attention_heads self.scaling_factor = scaling_factor self.patch_embedder = LuminaPatchEmbed( patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True ) self.pad_token = nn.Parameter(torch.empty(hidden_size)) self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding( hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim ) self.layers = nn.ModuleList( [ LuminaNextDiTBlock( hidden_size, num_attention_heads, num_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, cross_attention_dim, ) for _ in range(num_layers) ] ) self.norm_out = LuminaLayerNormContinuous( embedding_dim=hidden_size, conditioning_embedding_dim=min(hidden_size, 1024), elementwise_affine=False, eps=1e-6, bias=True, out_dim=patch_size * patch_size * self.out_channels, ) # self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels) assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4" def forward( self, hidden_states: torch.Tensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, encoder_mask: torch.Tensor, image_rotary_emb: torch.Tensor, cross_attention_kwargs: Dict[str, Any] = None, return_dict=True, ) -> torch.Tensor: """ Forward pass of LuminaNextDiT. Parameters: hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W). timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,). encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D). encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L). """ hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb) image_rotary_emb = image_rotary_emb.to(hidden_states.device) temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask) encoder_mask = encoder_mask.bool() for layer in self.layers: hidden_states = layer( hidden_states, mask, image_rotary_emb, encoder_hidden_states, encoder_mask, temb=temb, cross_attention_kwargs=cross_attention_kwargs, ) hidden_states = self.norm_out(hidden_states, temb) # unpatchify height_tokens = width_tokens = self.patch_size height, width = img_size[0] batch_size = hidden_states.size(0) sequence_length = (height // height_tokens) * (width // width_tokens) hidden_states = hidden_states[:, :sequence_length].view( batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels ) output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)