# Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, Optional, Union import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import logging from .attention_processor import AttentionProcessor from .controlnet import BaseOutput, Tuple, zero_module from .embeddings import ( HunyuanCombinedTimestepTextSizeStyleEmbedding, PatchEmbed, PixArtAlphaTextProjection, ) from .modeling_utils import ModelMixin from .transformers.hunyuan_transformer_2d import HunyuanDiTBlock logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class HunyuanControlNetOutput(BaseOutput): controlnet_block_samples: Tuple[torch.Tensor] class HunyuanDiT2DControlNetModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, conditioning_channels: int = 3, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, patch_size: Optional[int] = None, activation_fn: str = "gelu-approximate", sample_size=32, hidden_size=1152, transformer_num_layers: int = 40, mlp_ratio: float = 4.0, cross_attention_dim: int = 1024, cross_attention_dim_t5: int = 2048, pooled_projection_dim: int = 1024, text_len: int = 77, text_len_t5: int = 256, use_style_cond_and_image_meta_size: bool = True, ): super().__init__() self.num_heads = num_attention_heads self.inner_dim = num_attention_heads * attention_head_dim self.text_embedder = PixArtAlphaTextProjection( in_features=cross_attention_dim_t5, hidden_size=cross_attention_dim_t5 * 4, out_features=cross_attention_dim, act_fn="silu_fp32", ) self.text_embedding_padding = nn.Parameter( torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32) ) self.pos_embed = PatchEmbed( height=sample_size, width=sample_size, in_channels=in_channels, embed_dim=hidden_size, patch_size=patch_size, pos_embed_type=None, ) self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding( hidden_size, pooled_projection_dim=pooled_projection_dim, seq_len=text_len_t5, cross_attention_dim=cross_attention_dim_t5, use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size, ) # controlnet_blocks self.controlnet_blocks = nn.ModuleList([]) # HunyuanDiT Blocks self.blocks = nn.ModuleList( [ HunyuanDiTBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, activation_fn=activation_fn, ff_inner_dim=int(self.inner_dim * mlp_ratio), cross_attention_dim=cross_attention_dim, qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. skip=False, # always False as it is the first half of the model ) for layer in range(transformer_num_layers // 2 - 1) ] ) self.input_block = zero_module(nn.Linear(hidden_size, hidden_size)) for _ in range(len(self.blocks)): controlnet_block = nn.Linear(hidden_size, hidden_size) controlnet_block = zero_module(controlnet_block) self.controlnet_blocks.append(controlnet_block) @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) @classmethod def from_transformer( cls, transformer, conditioning_channels=3, transformer_num_layers=None, load_weights_from_transformer=True ): config = transformer.config activation_fn = config.activation_fn attention_head_dim = config.attention_head_dim cross_attention_dim = config.cross_attention_dim cross_attention_dim_t5 = config.cross_attention_dim_t5 hidden_size = config.hidden_size in_channels = config.in_channels mlp_ratio = config.mlp_ratio num_attention_heads = config.num_attention_heads patch_size = config.patch_size sample_size = config.sample_size text_len = config.text_len text_len_t5 = config.text_len_t5 conditioning_channels = conditioning_channels transformer_num_layers = transformer_num_layers or config.transformer_num_layers controlnet = cls( conditioning_channels=conditioning_channels, transformer_num_layers=transformer_num_layers, activation_fn=activation_fn, attention_head_dim=attention_head_dim, cross_attention_dim=cross_attention_dim, cross_attention_dim_t5=cross_attention_dim_t5, hidden_size=hidden_size, in_channels=in_channels, mlp_ratio=mlp_ratio, num_attention_heads=num_attention_heads, patch_size=patch_size, sample_size=sample_size, text_len=text_len, text_len_t5=text_len_t5, ) if load_weights_from_transformer: key = controlnet.load_state_dict(transformer.state_dict(), strict=False) logger.warning(f"controlnet load from Hunyuan-DiT. missing_keys: {key[0]}") return controlnet def forward( self, hidden_states, timestep, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, return_dict=True, ): """ The [`HunyuanDiT2DControlNetModel`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): The input tensor. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. controlnet_cond ( `torch.Tensor` ): The conditioning input to ControlNet. conditioning_scale ( `float` ): Indicate the conditioning scale. encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of `BertModel`. text_embedding_mask: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of `BertModel`. encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. text_embedding_mask_t5: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of T5 Text Encoder. image_meta_size (torch.Tensor): Conditional embedding indicate the image sizes style: torch.Tensor: Conditional embedding indicate the style image_rotary_emb (`torch.Tensor`): The image rotary embeddings to apply on query and key tensors during attention calculation. return_dict: bool Whether to return a dictionary. """ height, width = hidden_states.shape[-2:] hidden_states = self.pos_embed(hidden_states) # b,c,H,W -> b, N, C # 2. pre-process hidden_states = hidden_states + self.input_block(self.pos_embed(controlnet_cond)) temb = self.time_extra_emb( timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype ) # [B, D] # text projection batch_size, sequence_length, _ = encoder_hidden_states_t5.shape encoder_hidden_states_t5 = self.text_embedder( encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1]) ) encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) block_res_samples = () for layer, block in enumerate(self.blocks): hidden_states = block( hidden_states, temb=temb, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb, ) # (N, L, D) block_res_samples = block_res_samples + (hidden_states,) controlnet_block_res_samples = () for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): block_res_sample = controlnet_block(block_res_sample) controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) # 6. scaling controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] if not return_dict: return (controlnet_block_res_samples,) return HunyuanControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) class HunyuanDiT2DMultiControlNetModel(ModelMixin): r""" `HunyuanDiT2DMultiControlNetModel` wrapper class for Multi-HunyuanDiT2DControlNetModel This module is a wrapper for multiple instances of the `HunyuanDiT2DControlNetModel`. The `forward()` API is designed to be compatible with `HunyuanDiT2DControlNetModel`. Args: controlnets (`List[HunyuanDiT2DControlNetModel]`): Provides additional conditioning to the unet during the denoising process. You must set multiple `HunyuanDiT2DControlNetModel` as a list. """ def __init__(self, controlnets): super().__init__() self.nets = nn.ModuleList(controlnets) def forward( self, hidden_states, timestep, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, return_dict=True, ): """ The [`HunyuanDiT2DControlNetModel`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): The input tensor. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. controlnet_cond ( `torch.Tensor` ): The conditioning input to ControlNet. conditioning_scale ( `float` ): Indicate the conditioning scale. encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of `BertModel`. text_embedding_mask: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of `BertModel`. encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. text_embedding_mask_t5: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of T5 Text Encoder. image_meta_size (torch.Tensor): Conditional embedding indicate the image sizes style: torch.Tensor: Conditional embedding indicate the style image_rotary_emb (`torch.Tensor`): The image rotary embeddings to apply on query and key tensors during attention calculation. return_dict: bool Whether to return a dictionary. """ for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)): block_samples = controlnet( hidden_states=hidden_states, timestep=timestep, controlnet_cond=image, conditioning_scale=scale, encoder_hidden_states=encoder_hidden_states, text_embedding_mask=text_embedding_mask, encoder_hidden_states_t5=encoder_hidden_states_t5, text_embedding_mask_t5=text_embedding_mask_t5, image_meta_size=image_meta_size, style=style, image_rotary_emb=image_rotary_emb, return_dict=return_dict, ) # merge samples if i == 0: control_block_samples = block_samples else: control_block_samples = [ control_block_sample + block_sample for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0]) ] control_block_samples = (control_block_samples,) return control_block_samples