# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Adapted from https://github.com/huggingface/transformers/blob/c409cd81777fb27aadc043ed3d8339dbc020fb3b/src/transformers/integrations/bitsandbytes.py """ import inspect from inspect import signature from typing import Union from ...utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging from ..quantization_config import QuantizationMethod if is_torch_available(): import torch import torch.nn as nn if is_bitsandbytes_available(): import bitsandbytes as bnb if is_accelerate_available(): import accelerate from accelerate import init_empty_weights from accelerate.hooks import add_hook_to_module, remove_hook_from_module logger = logging.get_logger(__name__) def _replace_with_bnb_linear( model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, has_been_replaced=False, ): """ Private method that wraps the recursion for module replacement. Returns the converted model and a boolean that indicates if the conversion has been successfull or not. """ for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if isinstance(module, nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` current_key_name_str = ".".join(current_key_name) if not any( (key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert ): with init_empty_weights(): in_features = module.in_features out_features = module.out_features if quantization_config.quantization_method() == "llm_int8": model._modules[name] = bnb.nn.Linear8bitLt( in_features, out_features, module.bias is not None, has_fp16_weights=quantization_config.llm_int8_has_fp16_weight, threshold=quantization_config.llm_int8_threshold, ) has_been_replaced = True else: if ( quantization_config.llm_int8_skip_modules is not None and name in quantization_config.llm_int8_skip_modules ): pass else: extra_kwargs = ( {"quant_storage": quantization_config.bnb_4bit_quant_storage} if "quant_storage" in list(signature(bnb.nn.Linear4bit).parameters) else {} ) model._modules[name] = bnb.nn.Linear4bit( in_features, out_features, module.bias is not None, quantization_config.bnb_4bit_compute_dtype, compress_statistics=quantization_config.bnb_4bit_use_double_quant, quant_type=quantization_config.bnb_4bit_quant_type, **extra_kwargs, ) has_been_replaced = True # Store the module class in case we need to transpose the weight later model._modules[name].source_cls = type(module) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) if len(list(module.children())) > 0: _, has_been_replaced = _replace_with_bnb_linear( module, modules_to_not_convert, current_key_name, quantization_config, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def replace_with_bnb_linear(model, modules_to_not_convert=None, current_key_name=None, quantization_config=None): """ Helper function to replace the `nn.Linear` layers within `model` with either `bnb.nn.Linear8bit` or `bnb.nn.Linear4bit` using the `bitsandbytes` library. References: * `bnb.nn.Linear8bit`: [LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale](https://arxiv.org/abs/2208.07339) * `bnb.nn.Linear4bit`: [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314) Parameters: model (`torch.nn.Module`): Input model or `torch.nn.Module` as the function is run recursively. modules_to_not_convert (`List[`str`]`, *optional*, defaults to `[]`): Names of the modules to not convert in `Linear8bitLt`. In practice we keep the `modules_to_not_convert` in full precision for numerical stability reasons. current_key_name (`List[`str`]`, *optional*): An array to track the current key of the recursion. This is used to check whether the current key (part of it) is not in the list of modules to not convert (for instances modules that are offloaded to `cpu` or `disk`). quantization_config ('transformers.utils.quantization_config.BitsAndBytesConfig'): To configure and manage settings related to quantization, a technique used to compress neural network models by reducing the precision of the weights and activations, thus making models more efficient in terms of both storage and computation. """ model, has_been_replaced = _replace_with_bnb_linear( model, modules_to_not_convert, current_key_name, quantization_config ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model # Copied from PEFT: https://github.com/huggingface/peft/blob/47b3712898539569c02ec5b3ed4a6c36811331a1/src/peft/utils/integrations.py#L41 def dequantize_bnb_weight(weight: "torch.nn.Parameter", state=None): """ Helper function to dequantize 4bit or 8bit bnb weights. If the weight is not a bnb quantized weight, it will be returned as is. """ if not isinstance(weight, torch.nn.Parameter): raise TypeError(f"Input weight should be of type nn.Parameter, got {type(weight)} instead") cls_name = weight.__class__.__name__ if cls_name not in ("Params4bit", "Int8Params"): return weight if cls_name == "Params4bit": output_tensor = bnb.functional.dequantize_4bit(weight.data, weight.quant_state) logger.warning_once( f"The model is going to be dequantized in {output_tensor.dtype} - if you want to upcast it to another dtype, make sure to pass the desired dtype when quantizing the model through `bnb_4bit_quant_type` argument of `BitsAndBytesConfig`" ) return output_tensor if state.SCB is None: state.SCB = weight.SCB im = torch.eye(weight.data.shape[-1]).contiguous().half().to(weight.device) im, imt, SCim, SCimt, coo_tensorim = bnb.functional.double_quant(im) im, Sim = bnb.functional.transform(im, "col32") if state.CxB is None: state.CxB, state.SB = bnb.functional.transform(weight.data, to_order=state.formatB) out32, Sout32 = bnb.functional.igemmlt(im, state.CxB, Sim, state.SB) return bnb.functional.mm_dequant(out32, Sout32, SCim, state.SCB, bias=None).t() def _create_accelerate_new_hook(old_hook): r""" Creates a new hook based on the old hook. Use it only if you know what you are doing ! This method is a copy of: https://github.com/huggingface/peft/blob/748f7968f3a31ec06a1c2b0328993319ad9a150a/src/peft/utils/other.py#L245 with some changes """ old_hook_cls = getattr(accelerate.hooks, old_hook.__class__.__name__) old_hook_attr = old_hook.__dict__ filtered_old_hook_attr = {} old_hook_init_signature = inspect.signature(old_hook_cls.__init__) for k in old_hook_attr.keys(): if k in old_hook_init_signature.parameters: filtered_old_hook_attr[k] = old_hook_attr[k] new_hook = old_hook_cls(**filtered_old_hook_attr) return new_hook def _dequantize_and_replace( model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, has_been_replaced=False, ): """ Converts a quantized model into its dequantized original version. The newly converted model will have some performance drop compared to the original model before quantization - use it only for specific usecases such as QLoRA adapters merging. Returns the converted model and a boolean that indicates if the conversion has been successfull or not. """ quant_method = quantization_config.quantization_method() target_cls = bnb.nn.Linear8bitLt if quant_method == "llm_int8" else bnb.nn.Linear4bit for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if isinstance(module, target_cls) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` current_key_name_str = ".".join(current_key_name) if not any( (key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert ): bias = getattr(module, "bias", None) device = module.weight.device with init_empty_weights(): new_module = torch.nn.Linear(module.in_features, module.out_features, bias=bias is not None) if quant_method == "llm_int8": state = module.state else: state = None new_module.weight = torch.nn.Parameter(dequantize_bnb_weight(module.weight, state)) if bias is not None: new_module.bias = bias # Create a new hook and attach it in case we use accelerate if hasattr(module, "_hf_hook"): old_hook = module._hf_hook new_hook = _create_accelerate_new_hook(old_hook) remove_hook_from_module(module) add_hook_to_module(new_module, new_hook) new_module.to(device) model._modules[name] = new_module has_been_replaced = True if len(list(module.children())) > 0: _, has_been_replaced = _dequantize_and_replace( module, modules_to_not_convert, current_key_name, quantization_config, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def dequantize_and_replace( model, modules_to_not_convert=None, quantization_config=None, ): model, has_been_replaced = _dequantize_and_replace( model, modules_to_not_convert=modules_to_not_convert, quantization_config=quantization_config, ) if not has_been_replaced: logger.warning( "For some reason the model has not been properly dequantized. You might see unexpected behavior." ) return model def _check_bnb_status(module) -> Union[bool, bool]: is_loaded_in_4bit_bnb = ( hasattr(module, "is_loaded_in_4bit") and module.is_loaded_in_4bit and getattr(module, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES ) is_loaded_in_8bit_bnb = ( hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit and getattr(module, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES ) return is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb