Spaces:
Runtime error
Runtime error
import random | |
import torch | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as F | |
import numpy as np | |
from PIL import Image | |
def crop(image, target, region, delete=True): | |
cropped_image = F.crop(image, *region) | |
target = target.copy() | |
i, j, h, w = region | |
# should we do something wrt the original size? | |
target["size"] = torch.tensor([h, w]) | |
fields = ["labels", "area"] | |
if "boxes" in target: | |
boxes = target["boxes"] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) | |
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) | |
cropped_boxes = cropped_boxes.clamp(min=0) | |
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) | |
target["boxes"] = cropped_boxes.reshape(-1, 4) | |
target["area"] = area | |
fields.append("boxes") | |
if "polygons" in target: | |
polygons = target["polygons"] | |
num_polygons = polygons.shape[0] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
start_coord = torch.cat([torch.tensor([j, i], dtype=torch.float32) | |
for _ in range(polygons.shape[1] // 2)], dim=0) | |
cropped_boxes = polygons - start_coord | |
cropped_boxes = torch.min(cropped_boxes.reshape(num_polygons, -1, 2), max_size) | |
cropped_boxes = cropped_boxes.clamp(min=0) | |
target["polygons"] = cropped_boxes.reshape(num_polygons, -1) | |
fields.append("polygons") | |
if "masks" in target: | |
# FIXME should we update the area here if there are no boxes? | |
target['masks'] = target['masks'][:, i:i + h, j:j + w] | |
fields.append("masks") | |
# remove elements for which the boxes or masks that have zero area | |
if delete and ("boxes" in target or "masks" in target): | |
# favor boxes selection when defining which elements to keep | |
# this is compatible with previous implementation | |
if "boxes" in target: | |
cropped_boxes = target['boxes'].reshape(-1, 2, 2) | |
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) | |
else: | |
keep = target['masks'].flatten(1).any(1) | |
for field in fields: | |
target[field] = target[field][keep.tolist()] | |
return cropped_image, target | |
def hflip(image, target): | |
flipped_image = F.hflip(image) | |
w, h = image.size | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) | |
target["boxes"] = boxes | |
if "polygons" in target: | |
polygons = target["polygons"] | |
num_polygons = polygons.shape[0] | |
polygons = polygons.reshape(num_polygons, -1, 2) * torch.as_tensor([-1, 1]) + torch.as_tensor([w, 0]) | |
target["polygons"] = polygons | |
if "masks" in target: | |
target['masks'] = target['masks'].flip(-1) | |
return flipped_image, target | |
def resize(image, target, size, max_size=None): | |
# size can be min_size (scalar) or (w, h) tuple | |
def get_size_with_aspect_ratio(image_size, size, max_size=None): | |
w, h = image_size | |
if (w <= h and w == size) or (h <= w and h == size): | |
if max_size is not None: | |
max_size = int(max_size) | |
h = min(h, max_size) | |
w = min(w, max_size) | |
return (h, w) | |
if w < h: | |
ow = size | |
oh = int(size * h / w) | |
else: | |
oh = size | |
ow = int(size * w / h) | |
if max_size is not None: | |
max_size = int(max_size) | |
oh = min(oh, max_size) | |
ow = min(ow, max_size) | |
return (oh, ow) | |
def get_size(image_size, size, max_size=None): | |
if isinstance(size, (list, tuple)): | |
return size[::-1] | |
else: | |
return get_size_with_aspect_ratio(image_size, size, max_size) | |
size = get_size(image.size, size, max_size) | |
rescaled_image = F.resize(image, size, interpolation=Image.BICUBIC) | |
if target is None: | |
return rescaled_image | |
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) | |
ratio_width, ratio_height = ratios | |
target = target.copy() | |
if "boxes" in target: | |
boxes = target["boxes"] | |
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) | |
target["boxes"] = scaled_boxes | |
if "polygons" in target: | |
polygons = target["polygons"] | |
scaled_ratio = torch.cat([torch.tensor([ratio_width, ratio_height]) | |
for _ in range(polygons.shape[1] // 2)], dim=0) | |
scaled_polygons = polygons * scaled_ratio | |
target["polygons"] = scaled_polygons | |
if "area" in target: | |
area = target["area"] | |
scaled_area = area * (ratio_width * ratio_height) | |
target["area"] = scaled_area | |
h, w = size | |
target["size"] = torch.tensor([h, w]) | |
if "masks" in target: | |
assert False | |
# target['masks'] = interpolate( | |
# target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5 | |
return rescaled_image, target | |
class CenterCrop(object): | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, img, target): | |
image_width, image_height = img.size | |
crop_height, crop_width = self.size | |
crop_top = int(round((image_height - crop_height) / 2.)) | |
crop_left = int(round((image_width - crop_width) / 2.)) | |
return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) | |
class ObjectCenterCrop(object): | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, img, target): | |
image_width, image_height = img.size | |
crop_height, crop_width = self.size | |
x0 = float(target['boxes'][0][0]) | |
y0 = float(target['boxes'][0][1]) | |
x1 = float(target['boxes'][0][2]) | |
y1 = float(target['boxes'][0][3]) | |
center_x = (x0 + x1) / 2 | |
center_y = (y0 + y1) / 2 | |
crop_left = max(center_x-crop_width/2 + min(image_width-center_x-crop_width/2, 0), 0) | |
crop_top = max(center_y-crop_height/2 + min(image_height-center_y-crop_height/2, 0), 0) | |
return crop(img, target, (crop_top, crop_left, crop_height, crop_width), delete=False) | |
class RandomHorizontalFlip(object): | |
def __init__(self, p=0.5): | |
self.p = p | |
def __call__(self, img, target): | |
if random.random() < self.p: | |
return hflip(img, target) | |
return img, target | |
class RandomResize(object): | |
def __init__(self, sizes, max_size=None, equal=False): | |
assert isinstance(sizes, (list, tuple)) | |
self.sizes = sizes | |
self.max_size = max_size | |
self.equal = equal | |
def __call__(self, img, target=None): | |
size = random.choice(self.sizes) | |
if self.equal: | |
return resize(img, target, size, size) | |
else: | |
return resize(img, target, size, self.max_size) | |
class ToTensor(object): | |
def __call__(self, img, target): | |
return F.to_tensor(img), target | |
class Normalize(object): | |
def __init__(self, mean, std, max_image_size=512): | |
self.mean = mean | |
self.std = std | |
self.max_image_size = max_image_size | |
def __call__(self, image, target=None): | |
image = F.normalize(image, mean=self.mean, std=self.std) | |
if target is None: | |
return image, None | |
target = target.copy() | |
# h, w = image.shape[-2:] | |
h, w = target["size"][0], target["size"][1] | |
if "boxes" in target: | |
boxes = target["boxes"] | |
boxes = boxes / self.max_image_size | |
target["boxes"] = boxes | |
if "polygons" in target: | |
polygons = target["polygons"] | |
scale = torch.cat([torch.tensor([w, h], dtype=torch.float32) | |
for _ in range(polygons.shape[1] // 2)], dim=0) | |
polygons = polygons / scale | |
target["polygons"] = polygons | |
return image, target | |
class Compose(object): | |
def __init__(self, transforms): | |
self.transforms = transforms | |
def __call__(self, image, target): | |
for t in self.transforms: | |
image, target = t(image, target) | |
return image, target | |
def __repr__(self): | |
format_string = self.__class__.__name__ + "(" | |
for t in self.transforms: | |
format_string += "\n" | |
format_string += " {0}".format(t) | |
format_string += "\n)" | |
return format_string | |
class LargeScaleJitter(object): | |
""" | |
implementation of large scale jitter from copy_paste | |
""" | |
def __init__(self, output_size=512, aug_scale_min=0.3, aug_scale_max=2.0): | |
self.desired_size = torch.tensor([output_size]) | |
self.aug_scale_min = aug_scale_min | |
self.aug_scale_max = aug_scale_max | |
def rescale_target(self, scaled_size, image_size, target): | |
# compute rescaled targets | |
image_scale = scaled_size / image_size | |
ratio_height, ratio_width = image_scale | |
target = target.copy() | |
target["size"] = scaled_size | |
if "boxes" in target: | |
boxes = target["boxes"] | |
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) | |
target["boxes"] = scaled_boxes | |
if "area" in target: | |
area = target["area"] | |
scaled_area = area * (ratio_width * ratio_height) | |
target["area"] = scaled_area | |
if "masks" in target: | |
assert False | |
masks = target['masks'] | |
# masks = interpolate( | |
# masks[:, None].float(), scaled_size, mode="nearest")[:, 0] > 0.5 | |
target['masks'] = masks | |
return target | |
def crop_target(self, region, target): | |
i, j, h, w = region | |
fields = ["labels", "area"] | |
target = target.copy() | |
target["size"] = torch.tensor([h, w]) | |
if "boxes" in target: | |
boxes = target["boxes"] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) | |
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) | |
cropped_boxes = cropped_boxes.clamp(min=0) | |
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) | |
target["boxes"] = cropped_boxes.reshape(-1, 4) | |
target["area"] = area | |
fields.append("boxes") | |
if "masks" in target: | |
# FIXME should we update the area here if there are no boxes? | |
target['masks'] = target['masks'][:, i:i + h, j:j + w] | |
fields.append("masks") | |
# remove elements for which the boxes or masks that have zero area | |
if "boxes" in target or "masks" in target: | |
# favor boxes selection when defining which elements to keep | |
# this is compatible with previous implementation | |
if "boxes" in target: | |
cropped_boxes = target['boxes'].reshape(-1, 2, 2) | |
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) | |
else: | |
keep = target['masks'].flatten(1).any(1) | |
for field in fields: | |
target[field] = target[field][keep.tolist()] | |
return target | |
def pad_target(self, padding, target): | |
target = target.copy() | |
if "masks" in target: | |
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[1], 0, padding[0])) | |
return target | |
def __call__(self, image, target=None): | |
image_size = image.size | |
image_size = torch.tensor(image_size[::-1]) | |
random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min | |
scaled_size = (random_scale * self.desired_size).round() | |
scale = torch.maximum(scaled_size / image_size[0], scaled_size / image_size[1]) | |
scaled_size = (image_size * scale).round().int() | |
scaled_image = F.resize(image, scaled_size.tolist(), interpolation=Image.BICUBIC) | |
if target is not None: | |
target = self.rescale_target(scaled_size, image_size, target) | |
# randomly crop or pad images | |
if random_scale >= 1: | |
# Selects non-zero random offset (x, y) if scaled image is larger than desired_size. | |
max_offset = scaled_size - self.desired_size | |
offset = (max_offset * torch.rand(2)).floor().int() | |
region = (offset[0].item(), offset[1].item(), | |
self.desired_size[0].item(), self.desired_size[0].item()) | |
output_image = F.crop(scaled_image, *region) | |
if target is not None: | |
target = self.crop_target(region, target) | |
else: | |
assert False | |
padding = self.desired_size - scaled_size | |
output_image = F.pad(scaled_image, [0, 0, padding[1].item(), padding[0].item()]) | |
if target is not None: | |
target = self.pad_target(padding, target) | |
return output_image, target | |
class OriginLargeScaleJitter(object): | |
""" | |
implementation of large scale jitter from copy_paste | |
""" | |
def __init__(self, output_size=512, aug_scale_min=0.3, aug_scale_max=2.0): | |
self.desired_size = torch.tensor(output_size) | |
self.aug_scale_min = aug_scale_min | |
self.aug_scale_max = aug_scale_max | |
def rescale_target(self, scaled_size, image_size, target): | |
# compute rescaled targets | |
image_scale = scaled_size / image_size | |
ratio_height, ratio_width = image_scale | |
target = target.copy() | |
target["size"] = scaled_size | |
if "boxes" in target: | |
boxes = target["boxes"] | |
scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) | |
target["boxes"] = scaled_boxes | |
if "area" in target: | |
area = target["area"] | |
scaled_area = area * (ratio_width * ratio_height) | |
target["area"] = scaled_area | |
if "masks" in target: | |
assert False | |
masks = target['masks'] | |
# masks = interpolate( | |
# masks[:, None].float(), scaled_size, mode="nearest")[:, 0] > 0.5 | |
target['masks'] = masks | |
return target | |
def crop_target(self, region, target): | |
i, j, h, w = region | |
fields = ["labels", "area"] | |
target = target.copy() | |
target["size"] = torch.tensor([h, w]) | |
if "boxes" in target: | |
boxes = target["boxes"] | |
max_size = torch.as_tensor([w, h], dtype=torch.float32) | |
cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) | |
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) | |
cropped_boxes = cropped_boxes.clamp(min=0) | |
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) | |
target["boxes"] = cropped_boxes.reshape(-1, 4) | |
target["area"] = area | |
fields.append("boxes") | |
if "masks" in target: | |
# FIXME should we update the area here if there are no boxes? | |
target['masks'] = target['masks'][:, i:i + h, j:j + w] | |
fields.append("masks") | |
# remove elements for which the boxes or masks that have zero area | |
if "boxes" in target or "masks" in target: | |
# favor boxes selection when defining which elements to keep | |
# this is compatible with previous implementation | |
if "boxes" in target: | |
cropped_boxes = target['boxes'].reshape(-1, 2, 2) | |
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) | |
else: | |
keep = target['masks'].flatten(1).any(1) | |
for field in fields: | |
target[field] = target[field][keep.tolist()] | |
return target | |
def pad_target(self, padding, target): | |
target = target.copy() | |
if "masks" in target: | |
target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[1], 0, padding[0])) | |
return target | |
def __call__(self, image, target=None): | |
image_size = image.size | |
image_size = torch.tensor(image_size[::-1]) | |
out_desired_size = (self.desired_size * image_size / max(image_size)).round().int() | |
random_scale = torch.rand(1) * (self.aug_scale_max - self.aug_scale_min) + self.aug_scale_min | |
scaled_size = (random_scale * self.desired_size).round() | |
scale = torch.minimum(scaled_size / image_size[0], scaled_size / image_size[1]) | |
scaled_size = (image_size * scale).round().int() | |
scaled_image = F.resize(image, scaled_size.tolist()) | |
if target is not None: | |
target = self.rescale_target(scaled_size, image_size, target) | |
# randomly crop or pad images | |
if random_scale > 1: | |
# Selects non-zero random offset (x, y) if scaled image is larger than desired_size. | |
max_offset = scaled_size - out_desired_size | |
offset = (max_offset * torch.rand(2)).floor().int() | |
region = (offset[0].item(), offset[1].item(), | |
out_desired_size[0].item(), out_desired_size[1].item()) | |
output_image = F.crop(scaled_image, *region) | |
if target is not None: | |
target = self.crop_target(region, target) | |
else: | |
padding = out_desired_size - scaled_size | |
output_image = F.pad(scaled_image, [0, 0, padding[1].item(), padding[0].item()]) | |
if target is not None: | |
target = self.pad_target(padding, target) | |
return output_image, target | |
class RandomDistortion(object): | |
""" | |
Distort image w.r.t hue, saturation and exposure. | |
""" | |
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, prob=0.5): | |
self.prob = prob | |
self.tfm = T.ColorJitter(brightness, contrast, saturation, hue) | |
def __call__(self, img, target=None): | |
if np.random.random() < self.prob: | |
return self.tfm(img), target | |
else: | |
return img, target | |