File size: 4,385 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import collections
import os
import shutil
import tempfile
import unittest

import numpy as np
import torch
from scripts.average_checkpoints import average_checkpoints
from torch import nn


class ModelWithSharedParameter(nn.Module):
    def __init__(self):
        super(ModelWithSharedParameter, self).__init__()
        self.embedding = nn.Embedding(1000, 200)
        self.FC1 = nn.Linear(200, 200)
        self.FC2 = nn.Linear(200, 200)
        # tie weight in FC2 to FC1
        self.FC2.weight = nn.Parameter(self.FC1.weight)
        self.FC2.bias = nn.Parameter(self.FC1.bias)

        self.relu = nn.ReLU()

    def forward(self, input):
        return self.FC2(self.ReLU(self.FC1(input))) + self.FC1(input)


class TestAverageCheckpoints(unittest.TestCase):
    def test_average_checkpoints(self):
        params_0 = collections.OrderedDict(
            [
                ("a", torch.DoubleTensor([100.0])),
                ("b", torch.FloatTensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])),
                ("c", torch.IntTensor([7, 8, 9])),
            ]
        )
        params_1 = collections.OrderedDict(
            [
                ("a", torch.DoubleTensor([1.0])),
                ("b", torch.FloatTensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])),
                ("c", torch.IntTensor([2, 2, 2])),
            ]
        )
        params_avg = collections.OrderedDict(
            [
                ("a", torch.DoubleTensor([50.5])),
                ("b", torch.FloatTensor([[1.0, 1.5, 2.0], [2.5, 3.0, 3.5]])),
                # We expect truncation for integer division
                ("c", torch.IntTensor([4, 5, 5])),
            ]
        )

        fd_0, path_0 = tempfile.mkstemp()
        fd_1, path_1 = tempfile.mkstemp()
        torch.save(collections.OrderedDict([("model", params_0)]), path_0)
        torch.save(collections.OrderedDict([("model", params_1)]), path_1)

        output = average_checkpoints([path_0, path_1])["model"]

        os.close(fd_0)
        os.remove(path_0)
        os.close(fd_1)
        os.remove(path_1)

        for (k_expected, v_expected), (k_out, v_out) in zip(
            params_avg.items(), output.items()
        ):
            self.assertEqual(
                k_expected,
                k_out,
                "Key mismatch - expected {} but found {}. "
                "(Expected list of keys: {} vs actual list of keys: {})".format(
                    k_expected, k_out, params_avg.keys(), output.keys()
                ),
            )
            np.testing.assert_allclose(
                v_expected.numpy(),
                v_out.numpy(),
                err_msg="Tensor value mismatch for key {}".format(k_expected),
            )

    def test_average_checkpoints_with_shared_parameters(self):
        def _construct_model_with_shared_parameters(path, value):
            m = ModelWithSharedParameter()
            nn.init.constant_(m.FC1.weight, value)
            torch.save({"model": m.state_dict()}, path)
            return m

        tmpdir = tempfile.mkdtemp()
        paths = []
        path = os.path.join(tmpdir, "m1.pt")
        m1 = _construct_model_with_shared_parameters(path, 1.0)
        paths.append(path)

        path = os.path.join(tmpdir, "m2.pt")
        m2 = _construct_model_with_shared_parameters(path, 2.0)
        paths.append(path)

        path = os.path.join(tmpdir, "m3.pt")
        m3 = _construct_model_with_shared_parameters(path, 3.0)
        paths.append(path)

        new_model = average_checkpoints(paths)
        self.assertTrue(
            torch.equal(
                new_model["model"]["embedding.weight"],
                (m1.embedding.weight + m2.embedding.weight + m3.embedding.weight) / 3.0,
            )
        )

        self.assertTrue(
            torch.equal(
                new_model["model"]["FC1.weight"],
                (m1.FC1.weight + m2.FC1.weight + m3.FC1.weight) / 3.0,
            )
        )

        self.assertTrue(
            torch.equal(
                new_model["model"]["FC2.weight"],
                (m1.FC2.weight + m2.FC2.weight + m3.FC2.weight) / 3.0,
            )
        )
        shutil.rmtree(tmpdir)


if __name__ == "__main__":
    unittest.main()