Spaces:
Runtime error
Runtime error
File size: 4,150 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import unittest
import tests.utils as test_utils
import torch
from fairseq.sequence_scorer import SequenceScorer
class TestSequenceScorer(unittest.TestCase):
def test_sequence_scorer(self):
# construct dummy dictionary
d = test_utils.dummy_dictionary(vocab_size=2)
self.assertEqual(d.pad(), 1)
self.assertEqual(d.eos(), 2)
self.assertEqual(d.unk(), 3)
eos = d.eos()
w1 = 4
w2 = 5
# construct dataloader
data = [
{
"source": torch.LongTensor([w1, w2, eos]),
"target": torch.LongTensor([w1, w2, w1, eos]),
},
{
"source": torch.LongTensor([w2, eos]),
"target": torch.LongTensor([w2, w1, eos]),
},
{
"source": torch.LongTensor([w2, eos]),
"target": torch.LongTensor([w2, eos]),
},
]
data_itr = test_utils.dummy_dataloader(data)
# specify expected output probabilities
args = argparse.Namespace()
unk = 0.0
args.beam_probs = [
# step 0:
torch.FloatTensor(
[
# eos w1 w2
[0.0, unk, 0.6, 0.4], # sentence 1
[0.0, unk, 0.4, 0.6], # sentence 2
[0.0, unk, 0.7, 0.3], # sentence 3
]
),
# step 1:
torch.FloatTensor(
[
# eos w1 w2
[0.0, unk, 0.2, 0.7], # sentence 1
[0.0, unk, 0.8, 0.2], # sentence 2
[0.7, unk, 0.1, 0.2], # sentence 3
]
),
# step 2:
torch.FloatTensor(
[
# eos w1 w2
[0.10, unk, 0.50, 0.4], # sentence 1
[0.15, unk, 0.15, 0.7], # sentence 2
[0.00, unk, 0.00, 0.0], # sentence 3
]
),
# step 3:
torch.FloatTensor(
[
# eos w1 w2
[0.9, unk, 0.05, 0.05], # sentence 1
[0.0, unk, 0.00, 0.0], # sentence 2
[0.0, unk, 0.00, 0.0], # sentence 3
]
),
]
expected_scores = [
[0.6, 0.7, 0.5, 0.9], # sentence 1
[0.6, 0.8, 0.15], # sentence 2
[0.3, 0.7], # sentence 3
]
task = test_utils.TestTranslationTask.setup_task(args, d, d)
model = task.build_model(args)
scorer = SequenceScorer(task.target_dictionary)
for sample in data_itr:
hypos = task.inference_step(scorer, [model], sample)
for id, hypos_id in zip(sample["id"].tolist(), hypos):
self.assertHypoTokens(hypos_id[0], data[id]["target"])
self.assertHypoScore(hypos_id[0], expected_scores[id])
def assertHypoTokens(self, hypo, tokens):
self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens))
def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0):
pos_scores = torch.FloatTensor(pos_probs).log()
self.assertAlmostEqual(hypo["positional_scores"], pos_scores)
self.assertEqual(pos_scores.numel(), hypo["tokens"].numel())
score = pos_scores.sum()
if normalized:
score /= pos_scores.numel() ** lenpen
self.assertLess(abs(score - hypo["score"]), 1e-6)
def assertAlmostEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertLess((t1 - t2).abs().max(), 1e-4)
def assertTensorEqual(self, t1, t2):
self.assertEqual(t1.size(), t2.size(), "size mismatch")
self.assertEqual(t1.ne(t2).long().sum(), 0)
if __name__ == "__main__":
unittest.main()
|