Spaces:
Runtime error
Runtime error
File size: 10,653 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
from dataclasses import dataclass, field
import json
import logging
import string
from typing import Optional
from argparse import Namespace
from fairseq import metrics
from fairseq.tasks import register_task
from fairseq.data import encoders
from tasks.ofa_task import OFATask, OFAConfig
from data.nlg_data.summary_dataset import SummaryDataset
from data.file_dataset import FileDataset
from datasets import load_metric
logger = logging.getLogger(__name__)
_tok_dict = {"(": "-lrb-", ")": "-rrb-",
"[": "-lsb-", "]": "-rsb-",
"{": "-lcb-", "}": "-rcb-",
"[UNK]": "UNK", '&': '&', '<': '<', '>': '>'}
def _is_digit(w):
for ch in w:
if not(ch.isdigit() or ch == ','):
return False
return True
def fix_tokenization(text):
input_tokens = text.split()
output_tokens = []
has_left_quote = False
has_left_single_quote = False
i = 0
prev_dash = False
while i < len(input_tokens):
tok = input_tokens[i]
flag_prev_dash = False
if tok in _tok_dict.keys():
output_tokens.append(_tok_dict[tok])
i += 1
elif tok == "\"":
if has_left_quote:
output_tokens.append("''")
else:
output_tokens.append("``")
has_left_quote = not has_left_quote
i += 1
elif tok == "'" and len(output_tokens) > 0 and output_tokens[-1].endswith("n") and i < len(input_tokens) - 1 and input_tokens[i + 1] == "t":
output_tokens[-1] = output_tokens[-1][:-1]
output_tokens.append("n't")
i += 2
elif tok == "'" and i < len(input_tokens) - 1 and input_tokens[i + 1] in ("s", "d", "ll"):
output_tokens.append("'"+input_tokens[i + 1])
i += 2
elif tok == "'":
if has_left_single_quote:
output_tokens.append("'")
else:
output_tokens.append("`")
has_left_single_quote = not has_left_single_quote
i += 1
elif tok == "." and i < len(input_tokens) - 2 and input_tokens[i + 1] == "." and input_tokens[i + 2] == ".":
output_tokens.append("...")
i += 3
elif tok == "," and len(output_tokens) > 0 and _is_digit(output_tokens[-1]) and i < len(input_tokens) - 1 and _is_digit(input_tokens[i + 1]):
# $ 3 , 000 -> $ 3,000
output_tokens[-1] += ','+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and output_tokens[-1].isdigit() and i < len(input_tokens) - 1 and input_tokens[i + 1].isdigit():
# 3 . 03 -> $ 3.03
output_tokens[-1] += '.'+input_tokens[i + 1]
i += 2
elif tok == "." and len(output_tokens) > 0 and len(output_tokens[-1]) == 1 and output_tokens[-1].isupper() and i < len(input_tokens) - 2 and len(input_tokens[i + 1]) == 1 and input_tokens[i + 1].isupper() and input_tokens[i + 2] == '.':
# U . N . -> U.N.
k = i+3
while k+2 < len(input_tokens):
if len(input_tokens[k + 1]) == 1 and input_tokens[k + 1].isupper() and input_tokens[k + 2] == '.':
k += 2
else:
break
output_tokens[-1] += ''.join(input_tokens[i:k])
i += 2
elif tok == "-":
if i < len(input_tokens) - 1 and input_tokens[i + 1] == "-":
output_tokens.append("--")
i += 2
elif i == len(input_tokens) - 1 or i == 0:
output_tokens.append("-")
i += 1
elif output_tokens[-1] not in string.punctuation and input_tokens[i + 1][0] not in string.punctuation:
output_tokens[-1] += "-"
i += 1
flag_prev_dash = True
else:
output_tokens.append("-")
i += 1
elif prev_dash and len(output_tokens) > 0 and tok[0] not in string.punctuation:
output_tokens[-1] += tok
i += 1
else:
output_tokens.append(tok)
i += 1
prev_dash = flag_prev_dash
return " ".join(output_tokens)
@dataclass
class GigawordConfig(OFAConfig):
# options for reporting Rouge during validation
eval_rouge: bool = field(
default=False, metadata={"help": "evaluation with rouge scores"}
)
eval_args: Optional[str] = field(
default='{}',
metadata={
"help": 'generation args for BLUE or CIDEr scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string'
},
)
eval_detok: str = field(
default="space",
metadata={
"help": "detokenize before computing BLEU or CIDEr (e.g., 'moses'); "
"required if using --eval-bleu or --eval-cider; "
"use 'space' to disable detokenization; see fairseq.data.encoders for other options"
},
)
eval_detok_args: Optional[str] = field(
default="{}",
metadata={"help": "args for building the tokenizer, if needed, as JSON string"},
)
eval_print_samples: bool = field(
default=False, metadata={"help": "print sample generations during validation"}
)
noise_ratio: float = field(
default=0.0, metadata={"help": "noise ratio for prev output"}
)
@register_task("gigaword", dataclass=GigawordConfig)
class GigawordTask(OFATask):
def __init__(self, cfg: GigawordConfig, src_dict, tgt_dict):
super().__init__(cfg, src_dict, tgt_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
paths = self.cfg.data.split(',')
assert len(paths) > 0
if split == 'train':
file_path = paths[(epoch - 1) % (len(paths) - 1)]
else:
file_path = paths[-1]
dataset = FileDataset(file_path, self.cfg.selected_cols)
self.datasets[split] = SummaryDataset(
split,
dataset,
self.bpe,
self.src_dict,
self.tgt_dict,
code_dict_size=self.cfg.code_dict_size,
num_bins=self.cfg.num_bins,
max_src_length=self.cfg.max_src_length,
max_tgt_length=self.cfg.max_tgt_length,
noise_ratio=self.cfg.noise_ratio
)
def build_model(self, cfg):
model = super().build_model(cfg)
if self.cfg.eval_rouge:
detok_args = json.loads(self.cfg.eval_detok_args)
self.tokenizer = encoders.build_tokenizer(
Namespace(tokenizer=self.cfg.eval_detok, **detok_args)
)
gen_args = json.loads(self.cfg.eval_args)
self.sequence_generator = self.build_generator(
[model], Namespace(**gen_args)
)
self.metric = load_metric('../../utils/rouge.py')
return model
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if self.cfg.eval_rouge:
hyps, refs = self._inference(self.sequence_generator, sample, model)
result = self.metric.compute(predictions=hyps, references=refs, use_agregator=False, use_stemmer=True)
result_recall = {key: sum([item.recall for item in value]) * 100 for key, value in result.items()}
result_f1 = {key: sum([item.fmeasure for item in value]) * 100 for key, value in result.items()}
logging_output['_rouge1_recall_sum'] = result_recall['rouge1']
logging_output['_rouge2_recall_sum'] = result_recall['rouge2']
logging_output['_rougeL_recall_sum'] = result_recall['rougeL']
logging_output['_rouge1_f1_sum'] = result_f1['rouge1']
logging_output['_rouge2_f1_sum'] = result_f1['rouge2']
logging_output['_rougeL_f1_sum'] = result_f1['rougeL']
logging_output['_rouge_cnt'] = len(hyps)
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def sum_logs(key):
import torch
result = sum(log.get(key, 0) for log in logging_outputs)
if torch.is_tensor(result):
result = result.cpu()
return result
if sum_logs("_rouge_cnt") > 0:
metrics.log_scalar("_rouge1_recall_sum", sum_logs("_rouge1_recall_sum"))
metrics.log_scalar("_rouge2_recall_sum", sum_logs("_rouge2_recall_sum"))
metrics.log_scalar("_rougeL_recall_sum", sum_logs("_rougeL_recall_sum"))
metrics.log_scalar("_rouge1_f1_sum", sum_logs("_rouge1_f1_sum"))
metrics.log_scalar("_rouge2_f1_sum", sum_logs("_rouge2_f1_sum"))
metrics.log_scalar("_rougeL_f1_sum", sum_logs("_rougeL_f1_sum"))
metrics.log_scalar("_rouge_cnt", sum_logs("_rouge_cnt"))
metrics.log_derived("rouge1_recall", lambda x: x["_rouge1_recall_sum"].sum / x["_rouge_cnt"].sum)
metrics.log_derived("rouge2_recall", lambda x: x["_rouge2_recall_sum"].sum / x["_rouge_cnt"].sum)
metrics.log_derived("rougeL_recall", lambda x: x["_rougeL_recall_sum"].sum / x["_rouge_cnt"].sum)
metrics.log_derived("rouge1_f1", lambda x: x["_rouge1_f1_sum"].sum / x["_rouge_cnt"].sum)
metrics.log_derived("rouge2_f1", lambda x: x["_rouge2_f1_sum"].sum / x["_rouge_cnt"].sum)
metrics.log_derived("rougeL_f1", lambda x: x["_rougeL_f1_sum"].sum / x["_rouge_cnt"].sum)
def _inference(self, generator, sample, model):
def decode(toks):
s = self.tgt_dict.string(toks.int().cpu())
if self.bpe:
s = self.bpe.decode(s)
if self.tokenizer:
s = self.tokenizer.decode(s)
return s
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
for i in range(len(gen_out)):
hyp = decode(gen_out[i][0]["tokens"]).lower().strip()
hyp = fix_tokenization(hyp).replace('<unk>', ' unk').replace('1', '#')
ref = sample["target_strs"][i]
hyps.append(hyp)
refs.append(ref)
if self.cfg.eval_print_samples:
logger.info("example hypothesis: " + hyps[0])
logger.info("example reference: " + refs[0])
return hyps, refs
|