Spaces:
Runtime error
Runtime error
File size: 62,391 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
"""
Train a network across multiple GPUs.
"""
import contextlib
import logging
import sys
import time
from argparse import Namespace
from itertools import chain
from typing import Any, Dict, List
import torch
from fairseq import models, optim, utils
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics
from fairseq.models.ema import build_ema
from fairseq.nan_detector import NanDetector
from fairseq.optim import lr_scheduler
from omegaconf import OmegaConf
from utils import checkpoint_utils
logger = logging.getLogger(__name__)
class Trainer(object):
"""Main class for data parallel training.
This class supports synchronous distributed data parallel training,
where multiple workers each have a full model replica and gradients
are accumulated across workers before each update. We use
:class:`~torch.nn.parallel.DistributedDataParallel` to handle
communication of the gradients across workers.
"""
def __init__(self, cfg: FairseqConfig, task, model, criterion, quantizer=None):
if isinstance(cfg, Namespace):
logger.warning(
"argparse.Namespace configuration is deprecated! Automatically converting to OmegaConf"
)
cfg = convert_namespace_to_omegaconf(cfg)
self.cfg = cfg
self.task = task
# catalog shared parameters
shared_params = _catalog_shared_params(model)
self.tpu = cfg.common.tpu
self.cuda = torch.cuda.is_available() and not cfg.common.cpu and not self.tpu
if self.cuda:
self.device = torch.device("cuda")
elif self.tpu:
self.device = utils.get_tpu_device()
else:
self.device = torch.device("cpu")
if self.is_fsdp:
import fairscale
if self.cfg.common.bf16:
raise ValueError(
"FullyShardedDataParallel is not compatible with --bf16 or "
"--memory-efficient-bf16"
)
if self.cfg.distributed_training.zero_sharding != "none":
raise ValueError(
"FullyShardedDataParallel is not compatible with --zero-sharding "
"option (it's already built in)"
)
if max(self.cfg.optimization.update_freq) > 1 and fairscale.__version__ < "0.4.0":
raise RuntimeError(
"Please update to fairscale 0.4.0 or newer when combining "
"--update-freq with FullyShardedDataParallel"
)
else:
if (
hasattr(self.cfg.distributed_training, "cpu_offload")
and self.cfg.distributed_training.cpu_offload
):
raise ValueError("--cpu-offload requires --ddp-backend=fully_sharded")
# copy model and criterion to current device/dtype
self._criterion = criterion
self._model = model
if not self.is_fsdp:
if cfg.common.fp16:
assert not cfg.common.amp, "Cannot use fp16 and AMP together"
self._criterion = self._criterion.half()
self._model = self._model.half()
elif cfg.common.bf16:
self._criterion = self._criterion.to(dtype=torch.bfloat16)
self._model = self._model.to(dtype=torch.bfloat16)
elif cfg.common.amp:
self._amp_retries = 0
if (
not cfg.distributed_training.pipeline_model_parallel
# the DistributedFairseqModel wrapper will handle moving to device,
# so only handle cases which don't use the wrapper
and not self.use_distributed_wrapper
):
self._criterion = self._criterion.to(device=self.device)
self._model = self._model.to(device=self.device)
self.pipeline_model_parallel = cfg.distributed_training.pipeline_model_parallel
self.last_device = None
if self.cuda and self.pipeline_model_parallel:
self.last_device = torch.device(
cfg.distributed_training.pipeline_devices[-1]
)
# check that shared parameters are preserved after device transfer
for shared_param in shared_params:
ref = _get_module_by_path(self._model, shared_param[0])
for path in shared_param[1:]:
logger.info(
"detected shared parameter: {} <- {}".format(shared_param[0], path)
)
_set_module_by_path(self._model, path, ref)
self._dummy_batch = None # indicates we don't have a dummy batch at first
self._lr_scheduler = None
self._num_updates = 0
self._num_xla_compiles = 0 # for TPUs
self._optim_history = None
self._optimizer = None
self._warn_once = set()
self._wrapped_criterion = None
self._wrapped_model = None
self._ema = None
# TODO(myleott): support tpu
if self.cuda and self.data_parallel_world_size > 1:
self._grad_norm_buf = torch.cuda.DoubleTensor(self.data_parallel_world_size)
else:
self._grad_norm_buf = None
self.quantizer = quantizer
if self.quantizer is not None:
self.quantizer.set_trainer(self)
# get detailed cuda environment
if self.cuda:
self.cuda_env = utils.CudaEnvironment()
if self.data_parallel_world_size > 1:
self.cuda_env_arr = distributed_utils.all_gather_list(
self.cuda_env, group=distributed_utils.get_global_group()
)
else:
self.cuda_env_arr = [self.cuda_env]
if self.data_parallel_rank == 0:
utils.CudaEnvironment.pretty_print_cuda_env_list(self.cuda_env_arr)
else:
self.cuda_env = None
self.cuda_env_arr = None
metrics.log_start_time("wall", priority=790, round=0)
self._start_time = time.time()
self._previous_training_time = 0
self._cumulative_training_time = None
def reinitialize(self):
"""Reinitialize the Trainer, typically after model params change."""
self._lr_scheduler = None
self._optimizer = None
self._wrapped_criterion = None
self._wrapped_model = None
@property
def data_parallel_world_size(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 1
return distributed_utils.get_data_parallel_world_size()
@property
def data_parallel_process_group(self):
return distributed_utils.get_data_parallel_group()
@property
def data_parallel_rank(self):
if self.cfg.distributed_training.distributed_world_size == 1:
return 0
return distributed_utils.get_data_parallel_rank()
@property
def is_data_parallel_master(self):
# NOTE: this returns true for all model parallel replicas with data
# parallel rank 0
return self.data_parallel_rank == 0
@property
def use_distributed_wrapper(self) -> bool:
return (
self.data_parallel_world_size > 1 and not self.cfg.optimization.use_bmuf
) or (
self.is_fsdp and self.cfg.distributed_training.cpu_offload
)
@property
def should_save_checkpoint_on_current_rank(self) -> bool:
"""Indicates whether to save checkpoints on the current DDP rank."""
if (
self.is_fsdp and self.cfg.distributed_training.use_sharded_state
) or getattr(self.cfg.model, "base_layers", 0) > 0:
return True
else:
return self.is_data_parallel_master
@property
def always_call_state_dict_during_save_checkpoint(self) -> bool:
if self.is_fsdp and not self.cfg.distributed_training.use_sharded_state:
# FSDP calls communication collective when consolidating checkpoints
return True
else:
return False
@property
def checkpoint_suffix(self) -> str:
"""Suffix to add to the checkpoint file name."""
if self.is_fsdp and self.cfg.distributed_training.use_sharded_state:
return self.cfg.checkpoint.checkpoint_suffix + "-shard{0}".format(
self.data_parallel_rank
)
else:
return self.cfg.checkpoint.checkpoint_suffix or ""
@property
def criterion(self):
if self._wrapped_criterion is None:
if utils.has_parameters(self._criterion) and self.use_distributed_wrapper:
self._wrapped_criterion = models.DistributedFairseqModel(
self.cfg.distributed_training,
self._criterion,
process_group=self.data_parallel_process_group,
device=self.device,
)
else:
self._wrapped_criterion = self._criterion
return self._wrapped_criterion
@property
def model(self):
if self._wrapped_model is None:
if self.use_distributed_wrapper:
self._wrapped_model = models.DistributedFairseqModel(
self.cfg.distributed_training,
self._model,
process_group=self.data_parallel_process_group,
device=self.device,
)
else:
self._wrapped_model = self._model
return self._wrapped_model
@property
def ema(self):
if self._ema is None:
self._build_ema()
return self._ema
def _build_ema(self):
if self.cfg.ema.store_ema:
self._ema = build_ema(self._model, self.cfg.ema, self.device)
logger.info(
"Exponential Moving Average Shadow Model is initialized."
)
@property
def optimizer(self):
if self._optimizer is None:
self._build_optimizer()
return self._optimizer
@property
def lr_scheduler(self):
if self._lr_scheduler is None:
self._build_optimizer() # this will initialize self._lr_scheduler
return self._lr_scheduler
def _build_optimizer(self):
params = list(
filter(
lambda p: p.requires_grad,
chain(self.model.parameters(), self.criterion.parameters()),
)
)
if self.is_fsdp and self.cfg.common.fp16:
# FullyShardedDataParallel always uses MemoryEfficientFP16 wrapper,
# mostly for the grad scaling. But if we don't have the
# --memory-efficient-fp16 flag set, then we're effectively doing
# regular --fp16 and can allow the use of optimizers that would
# otherwise be unsupported by MemoryEfficientFP16Optimizer.
allow_unsupported = not self.cfg.common.memory_efficient_fp16
self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
self.cfg, params, allow_unsupported=allow_unsupported
)
elif self.cfg.common.fp16 or self.cfg.common.bf16 or self.cfg.common.amp:
if self.cuda and torch.cuda.get_device_capability(0)[0] < 7:
logger.info(
"NOTE: your device does NOT support faster training with --fp16 or --amp, "
"please switch to FP32 which is likely to be faster"
)
if (
self.cfg.common.memory_efficient_fp16
or self.cfg.common.memory_efficient_bf16
):
self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer(
self.cfg, params
)
elif self.cfg.common.amp:
self._optimizer = optim.AMPOptimizer.build_optimizer(self.cfg, params)
else:
self._optimizer = optim.FP16Optimizer.build_optimizer(self.cfg, params)
else:
if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7:
logger.info("NOTE: your device may support faster training with --fp16 or --amp")
self._optimizer = optim.build_optimizer(self.cfg.optimizer, params)
if self.is_fsdp:
assert (
not self.cfg.optimization.use_bmuf
), "--ddp-backend=fully_sharded is not compatible with BMUF"
assert self._optimizer.supports_flat_params, (
"--ddp-backend=fully_sharded is only compatible with pointwise "
"optimizers (e.g., Adam, AdamW, Adadelta, Adamax, SGD, etc.). "
"However, the sharding will result in slightly different results when "
"using non-pointwise optimizers (e.g., Adagrad, Adafactor, LAMB)"
)
if self.cfg.optimization.use_bmuf:
self._optimizer = optim.FairseqBMUF(
self.cfg.bmuf,
self._optimizer,
)
if self.cfg.distributed_training.zero_sharding == "os":
if (
self.cfg.common.fp16
and not self.cfg.common.memory_efficient_fp16
and not self.cfg.common.memory_efficient_bf16
) and not self.cfg.common.fp16_no_flatten_grads:
raise ValueError(
"ZeRO is incomptabile with fp16 and flattened grads. "
"Please use --fp16-no-flatten-grads"
)
else:
optim.shard_(self._optimizer, self.data_parallel_process_group)
# We should initialize the learning rate scheduler immediately after
# building the optimizer, so that the initial learning rate is set.
self._lr_scheduler = lr_scheduler.build_lr_scheduler(
self.cfg.lr_scheduler,
self.optimizer,
)
self._lr_scheduler.step_update(0)
@property
def is_fsdp(self):
return self.cfg.distributed_training.ddp_backend == "fully_sharded"
def consolidate_optimizer(self):
"""For OSS, we need to consolidate the state dict."""
if self.cfg.checkpoint.no_save_optimizer_state:
return
self._gathered_optim_state = None
if hasattr(self.optimizer.optimizer, "consolidate_state_dict"):
self.optimizer.optimizer.consolidate_state_dict()
elif self.is_fsdp and not self.model.use_sharded_state:
st = self.model.gather_full_optim_state_dict(
self.optimizer
) # only returns on rank 0
self._gathered_optim_state = st
def state_dict(self):
state_dict = {
"args": None, # legacy
"cfg": (
OmegaConf.to_container(self.cfg, resolve=True, enum_to_str=True)
if OmegaConf.is_config(self.cfg)
else self.cfg
),
"model": self.model.state_dict(),
"criterion": (
self.criterion.state_dict()
if utils.has_parameters(self.criterion)
else None
),
"optimizer_history": (self._optim_history or [])
+ [
{
"criterion_name": self.get_criterion().__class__.__name__,
"optimizer_name": self.optimizer.__class__.__name__,
"lr_scheduler_state": self.lr_scheduler.state_dict(),
"num_updates": self.get_num_updates(),
}
],
"task_state": self.task.state_dict() if self.task is not None else {},
"extra_state": {
"metrics": metrics.state_dict(),
"previous_training_time": self.cumulative_training_time(),
},
}
if self.cfg.ema.store_ema:
# Save EMA model state as extra state
state_dict["extra_state"]["ema"] = self.ema.get_model().state_dict()
if self.cfg.ema.ema_fp32:
# Save EMA params in fp32
state_dict["extra_state"]["ema_fp32_params"] = self.ema.fp32_params
if not self.cfg.checkpoint.no_save_optimizer_state:
if self._gathered_optim_state is not None:
state_dict["last_optimizer_state"] = self._gathered_optim_state
self._gathered_optim_state = None
else:
state_dict["last_optimizer_state"] = self.optimizer.state_dict()
if self.is_fsdp:
# save meta data for recombining checkpoint upon loading
state_dict["fsdp_metadata"] = self.model.local_metadata_dict()
return state_dict
def save_checkpoint(self, filename, extra_state):
"""Save all training state in a checkpoint file."""
logger.info(f"Saving checkpoint to {filename}")
# call state_dict on all ranks in case it needs internal communication
state_dict = utils.move_to_cpu(self.state_dict())
state_dict["extra_state"].update(extra_state)
if self.should_save_checkpoint_on_current_rank:
checkpoint_utils.torch_persistent_save(
state_dict,
filename,
async_write=self.cfg.checkpoint.write_checkpoints_asynchronously,
)
logger.info(f"Finished saving checkpoint to {filename}")
def load_checkpoint(
self,
filename,
reset_optimizer=False,
reset_lr_scheduler=False,
optimizer_overrides=None,
reset_meters=False,
):
"""
Load all training state from a checkpoint file.
rank = 0 will load the checkpoint, and then broadcast it to all
other ranks.
"""
extra_state, self._optim_history, last_optim_state = None, [], None
logger.info(f"Preparing to load checkpoint {filename}")
is_distributed = self.data_parallel_world_size > 1
bexists = PathManager.isfile(filename)
if bexists:
load_on_all_ranks = (
self.cfg.checkpoint.load_checkpoint_on_all_dp_ranks
# TPUs don't support broadcast yet, so load checkpoints
# on every worker for now
or self.tpu
# FSDP requires loading checkpoint shards on all ranks
or (self.is_fsdp and self.cfg.distributed_training.use_sharded_state)
or getattr(self.cfg.model, "base_layers", 0) > 0
)
if load_on_all_ranks or self.data_parallel_rank == 0:
state = checkpoint_utils.load_checkpoint_to_cpu(
filename, load_on_all_ranks=load_on_all_ranks
)
last_optim_state = state.get("last_optimizer_state", None)
# If doing zero_sharding, do not broadcast global optimizer
# state. Later we will broadcast sharded states to each rank
# to avoid memory from exploding.
if (
not load_on_all_ranks
and self.cfg.distributed_training.zero_sharding == "os"
and "last_optimizer_state" in state
and is_distributed
):
state["last_optimizer_state"] = "SHARDED"
else:
last_optim_state = None
state = None
if is_distributed and not load_on_all_ranks:
state = distributed_utils.broadcast_object(
state,
src_rank=0,
group=self.data_parallel_process_group,
dist_device=self.device,
)
if self.data_parallel_rank > 0:
last_optim_state = state.get("last_optimizer_state", None)
# load model parameters
try:
if self.cfg.checkpoint.use_ema_weights_to_init_param and "extra_state" in state and "ema" in state["extra_state"]:
logger.info("use_ema_weights_to_init_param = True, will use EMA weights in the ckpt to init the model param...")
ema_state_dict = state["extra_state"]["ema_fp32_params"] if "ema_fp32_params" in state["extra_state"] else state["extra_state"]["ema"]
self.model.load_state_dict(
ema_state_dict, strict=True, model_cfg=self.cfg.model
)
else:
self.model.load_state_dict(
state["model"], strict=True, model_cfg=self.cfg.model
)
# save memory for later steps
if not (self.cfg.ema.store_ema and (self.cfg.checkpoint.use_latest_weights_to_init_ema or not ("extra_state" in state and "ema" in state["extra_state"]))):
del state["model"]
if utils.has_parameters(self.get_criterion()):
self.get_criterion().load_state_dict(
state["criterion"], strict=True
)
del state["criterion"]
except Exception:
raise Exception(
"Cannot load model parameters from checkpoint {}; "
"please ensure that the architectures match.".format(filename)
)
extra_state = state["extra_state"]
self._optim_history = state["optimizer_history"]
if last_optim_state is not None and not reset_optimizer:
# rebuild optimizer after loading model, since params may have changed
self._build_optimizer()
# only reload optimizer and lr_scheduler if they match
last_optim = self._optim_history[-1]
assert (
last_optim["criterion_name"] == self.get_criterion().__class__.__name__
), f"Criterion does not match; please reset the optimizer (--reset-optimizer). {last_optim['criterion_name']} vs {self.get_criterion().__class__.__name__}"
assert (
last_optim["optimizer_name"] == self.optimizer.__class__.__name__
), f"Optimizer does not match; please reset the optimizer (--reset-optimizer). {last_optim['optimizer_name']} vs {self.optimizer.__class__.__name__}"
if not reset_lr_scheduler:
self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"])
if self.is_fsdp and not self.model.use_sharded_state:
# if use_sharded_state, the last_optim_state is already sharded, skip this
last_optim_state = self.model.get_shard_from_optim_state_dict(
last_optim_state
)
elif not load_on_all_ranks and is_distributed:
last_optim_state = self.optimizer.broadcast_global_state_dict(
last_optim_state
)
self.optimizer.load_state_dict(last_optim_state, optimizer_overrides)
self.set_num_updates(last_optim["num_updates"])
if extra_state is not None:
itr_state = extra_state["train_iterator"]
epoch = itr_state["epoch"]
if "previous_training_time" in extra_state:
self._previous_training_time = extra_state["previous_training_time"]
self._start_time = time.time()
self.lr_step(epoch)
if (
itr_state.get("version", 1) >= 2
and itr_state["iterations_in_epoch"] == 0
):
# reset meters at start of epoch
reset_meters = True
if "metrics" in extra_state and not reset_meters:
metrics.load_state_dict(extra_state["metrics"])
# reset TimeMeters, since their start times don't make sense anymore
for meter in metrics.get_meters("default"):
if isinstance(meter, meters.TimeMeter):
meter.reset()
if self.cfg.ema.store_ema:
if self.cfg.checkpoint.use_latest_weights_to_init_ema or "ema" not in extra_state:
if "ema" not in extra_state:
logger.warn(
"EMA not found in checkpoint. But store_ema is True. "
"EMA is re-initialized from checkpoint."
)
elif self.cfg.checkpoint.use_latest_weights_to_init_ema:
logger.info(
"use_latest_weights_to_init_ema = True. EMA is re-initialized from checkpoint."
)
self.ema.restore(state["model"], build_fp32_params=self.cfg.ema.ema_fp32)
del state["model"]
else:
logger.info(
"Loading EMA from checkpoint"
)
self.ema.restore(extra_state["ema"], build_fp32_params=False)
if self.cfg.ema.ema_fp32:
if "ema_fp32_params" in extra_state:
logger.info(
"Loading EMA fp32 params from checkpoint"
)
self.ema.build_fp32_params(extra_state["ema_fp32_params"])
else:
logger.info(
"Building EMA fp32 params from EMA model in checkpoint"
)
self.ema.build_fp32_params()
logger.info(
"Loaded checkpoint {} (epoch {} @ {} updates)".format(
filename, epoch, self.get_num_updates()
)
)
else:
logger.info("No existing checkpoint found {}".format(filename))
return extra_state
def get_train_iterator(
self,
epoch,
combine=True,
load_dataset=True,
data_selector=None,
shard_batch_itr=True,
disable_iterator_cache=False,
):
"""Return an EpochBatchIterator over the training set for a given epoch."""
if load_dataset:
logger.info("loading train data for epoch {}".format(epoch))
self.task.load_dataset(
self.cfg.dataset.train_subset,
epoch=epoch,
combine=combine,
data_selector=data_selector,
tpu=self.tpu,
)
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.dataset(self.cfg.dataset.train_subset),
max_tokens=self.cfg.dataset.max_tokens,
max_sentences=self.cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
self.cfg.dataset.max_tokens,
),
ignore_invalid_inputs=True,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=self.cfg.common.seed,
num_shards=self.data_parallel_world_size if shard_batch_itr else 1,
shard_id=self.data_parallel_rank if shard_batch_itr else 0,
num_workers=self.cfg.dataset.num_workers,
epoch=epoch,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
)
self.reset_dummy_batch(batch_iterator.first_batch)
batch_iterator.dataset.dataset._seek()
return batch_iterator
def get_valid_iterator(
self,
subset,
disable_iterator_cache=False,
):
"""Return an EpochBatchIterator over given validation subset for a given epoch."""
self.task.dataset(subset).dataset._seek()
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.dataset(subset),
max_tokens=self.cfg.dataset.max_tokens_valid,
max_sentences=self.cfg.dataset.batch_size_valid,
max_positions=utils.resolve_max_positions(
self.task.max_positions(),
self.model.max_positions(),
),
ignore_invalid_inputs=self.cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=self.cfg.dataset.required_batch_size_multiple,
seed=self.cfg.common.seed,
num_shards=self.data_parallel_world_size,
shard_id=self.data_parallel_rank,
num_workers=self.cfg.dataset.num_workers,
# always pass a fixed "epoch" to keep validation data consistent
# across training epochs
epoch=1,
data_buffer_size=self.cfg.dataset.data_buffer_size,
disable_iterator_cache=disable_iterator_cache,
)
self.reset_dummy_batch(batch_iterator.first_batch)
batch_iterator.dataset.dataset._seek()
return batch_iterator
def begin_epoch(self, epoch):
"""Called at the beginning of each epoch."""
logger.info("begin training epoch {}".format(epoch))
self.lr_step_begin_epoch(epoch)
if self.quantizer is not None:
self.quantizer.begin_epoch(epoch)
# task specific setup per epoch
self.task.begin_epoch(epoch, self.get_model())
if self.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("begin_epoch") # wait for all workers
xm.mark_step()
def begin_valid_epoch(self, epoch):
"""Called at the beginning of each validation epoch."""
# task specific setup per validation epoch
self.task.begin_valid_epoch(epoch, self.get_model())
def reset_dummy_batch(self, batch):
self._dummy_batch = batch
@metrics.aggregate("train")
def train_step(self, samples, raise_oom=False):
"""Do forward, backward and parameter update."""
self._set_seed()
self.model.train()
self.criterion.train()
self.zero_grad()
metrics.log_start_time("train_wall", priority=800, round=0)
# If EMA is enabled through store_ema=True
# and task.uses_ema is True, pass the EMA model as a keyword
# argument to the task.
extra_kwargs = {}
if self.cfg.ema.store_ema and getattr(self.task, "uses_ema", False):
extra_kwargs["ema_model"] = self.ema.get_model()
# forward and backward pass
logging_outputs, sample_size, ooms = [], 0, 0
for i, sample in enumerate(samples): # delayed update loop
sample, is_dummy_batch = self._prepare_sample(sample)
def maybe_no_sync():
"""
Whenever *samples* contains more than one mini-batch, we
want to accumulate gradients locally and only call
all-reduce in the last backwards pass.
"""
if (
self.data_parallel_world_size > 1
and hasattr(self.model, "no_sync")
and i < len(samples) - 1
# The no_sync context manager results in increased memory
# usage with FSDP, since full-size gradients will be
# accumulated on each GPU. It's typically a better tradeoff
# to do the extra communication with FSDP.
and not self.is_fsdp
):
return self.model.no_sync()
else:
return contextlib.ExitStack() # dummy contextmanager
try:
with maybe_no_sync():
# forward and backward
loss, sample_size_i, logging_output = self.task.train_step(
sample=sample,
model=self.model,
criterion=self.criterion,
optimizer=self.optimizer,
update_num=self.get_num_updates(),
ignore_grad=is_dummy_batch,
**extra_kwargs,
)
del loss
logging_outputs.append(logging_output)
sample_size += sample_size_i
# emptying the CUDA cache after the first step can
# reduce the chance of OOM
if self.cuda and self.get_num_updates() == 0:
torch.cuda.empty_cache()
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
if raise_oom:
raise e
logger.warning(
"attempting to recover from OOM in forward/backward pass"
)
ooms += 1
self.zero_grad()
if self.cuda:
torch.cuda.empty_cache()
if self.cfg.distributed_training.distributed_world_size == 1:
return None
else:
raise e
if self.tpu and i < len(samples) - 1:
# tpu-comment: every XLA operation before marking step is
# appended to the IR graph, and processing too many batches
# before marking step can lead to OOM errors.
# To handle gradient accumulation use case, we explicitly
# mark step here for every forward pass without a backward pass
self._xla_markstep_and_send_to_cpu()
if is_dummy_batch:
if torch.is_tensor(sample_size):
sample_size.zero_()
else:
sample_size *= 0.0
if torch.is_tensor(sample_size):
sample_size = sample_size.float()
else:
sample_size = float(sample_size)
# gather logging outputs from all replicas
if self._sync_stats():
train_time = self._local_cumulative_training_time()
logging_outputs, (
sample_size,
ooms,
total_train_time,
) = self._aggregate_logging_outputs(
logging_outputs, sample_size, ooms, train_time, ignore=is_dummy_batch
)
self._cumulative_training_time = (
total_train_time / self.data_parallel_world_size
)
overflow = False
try:
with torch.autograd.profiler.record_function("reduce-grads"):
# reduce gradients across workers
self.optimizer.all_reduce_grads(self.model)
if utils.has_parameters(self.criterion):
self.optimizer.all_reduce_grads(self.criterion)
with torch.autograd.profiler.record_function("multiply-grads"):
# multiply gradients by (data_parallel_size / sample_size) since
# DDP normalizes by the number of data parallel workers for
# improved fp16 precision.
# Thus we get (sum_of_gradients / sample_size) at the end.
# In case of fp16, this step also undoes loss scaling.
# (Debugging note: Some optimizers perform this scaling on the
# fly, so inspecting model.parameters() or optimizer.params may
# still show the original, unscaled gradients.)
numer = (
self.data_parallel_world_size
if not self.cfg.optimization.use_bmuf or self._sync_stats()
else 1
)
self.optimizer.multiply_grads(numer / (sample_size or 1.0))
# Note: (sample_size or 1.0) handles the case of a zero gradient, in a
# way that avoids CPU/device transfers in case sample_size is a GPU or
# TPU object. The assumption is that the gradient itself is also 0.
with torch.autograd.profiler.record_function("clip-grads"):
# clip grads
grad_norm = self.clip_grad_norm(self.cfg.optimization.clip_norm)
# check that grad norms are consistent across workers
# on tpu check tensor is slow
if not self.tpu:
if (
not self.cfg.optimization.use_bmuf
and self.cfg.distributed_training.ddp_backend != "slow_mo"
):
self._check_grad_norms(grad_norm)
if not torch.isfinite(grad_norm).all():
# in case of AMP, if gradients are Nan/Inf then
# optimizer step is still required
if self.cfg.common.amp:
overflow = True
else:
# check local gradnorm single GPU case, trigger NanDetector
raise FloatingPointError("gradients are Nan/Inf")
with torch.autograd.profiler.record_function("optimizer"):
# take an optimization step
self.task.optimizer_step(
self.optimizer, model=self.model, update_num=self.get_num_updates()
)
if self.cfg.common.amp and overflow:
if self._amp_retries == self.cfg.common.amp_batch_retries:
logger.info("AMP: skipping this batch.")
self._amp_retries = 0
else:
self._amp_retries += 1
return self.train_step(samples, raise_oom) # recursion to feed in same batch
except FloatingPointError:
# re-run the forward and backward pass with hooks attached to print
# out where it fails
self.zero_grad()
with NanDetector(self.get_model()):
for _, sample in enumerate(samples):
sample, _ = self._prepare_sample(sample)
self.task.train_step(
sample,
self.model,
self.criterion,
self.optimizer,
self.get_num_updates(),
ignore_grad=False,
**extra_kwargs,
)
raise
except OverflowError as e:
overflow = True
logger.info(
f"NOTE: gradient overflow detected, ignoring gradient, {str(e)}"
)
grad_norm = torch.tensor(0.0).cuda()
self.zero_grad()
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
logger.error("OOM during optimization, irrecoverable")
raise e
# Some distributed wrappers (e.g., SlowMo) need access to the optimizer
# after the step
if hasattr(self.model, "perform_additional_optimizer_actions"):
if hasattr(self.optimizer, "fp32_params"):
self.model.perform_additional_optimizer_actions(
self.optimizer.optimizer, self.optimizer.fp32_params
)
else:
self.model.perform_additional_optimizer_actions(
self.optimizer.optimizer
)
logging_output = None
if not overflow or self.cfg.distributed_training.ddp_backend == "slow_mo":
self.set_num_updates(self.get_num_updates() + 1)
if self.cfg.ema.store_ema:
# Step EMA forward with new model.
self.ema.step(
self.get_model(),
self.get_num_updates(),
)
metrics.log_scalar(
"ema_decay",
self.ema.get_decay(),
priority=10000,
round=5,
weight=0,
)
if self.tpu:
import torch_xla.core.xla_model as xm
# mark step on TPUs
self._xla_markstep_and_send_to_cpu()
# only log stats every log_interval steps
# this causes wps to be misreported when log_interval > 1
logging_output = {}
if self.get_num_updates() % self.cfg.common.log_interval == 0:
# log memory usage
mem_info = xm.get_memory_info(self.device)
gb_free = mem_info["kb_free"] / 1024 / 1024
gb_total = mem_info["kb_total"] / 1024 / 1024
metrics.log_scalar(
"gb_free", gb_free, priority=1500, round=1, weight=0
)
metrics.log_scalar(
"gb_total", gb_total, priority=1600, round=1, weight=0
)
logging_outputs = self._xla_markstep_and_send_to_cpu(
logging_outputs
)
logging_output = self._reduce_and_log_stats(
logging_outputs, sample_size, grad_norm
)
# log whenever there's an XLA compilation, since these
# slow down training and may indicate opportunities for
# optimization
self._check_xla_compilation()
else:
if self.cuda and self.cuda_env is not None:
# log minimum free memory over the iteration
gb_used = torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024
torch.cuda.reset_peak_memory_stats()
gb_free = self.cuda_env.total_memory_in_GB - gb_used
metrics.log_scalar(
"gb_free", gb_free, priority=1500, round=1, weight=0
)
# log stats
logging_output = self._reduce_and_log_stats(
logging_outputs, sample_size, grad_norm
)
# clear CUDA cache to reduce memory fragmentation
if (
self.cuda
and self.cfg.common.empty_cache_freq > 0
and (
(self.get_num_updates() + self.cfg.common.empty_cache_freq - 1)
% self.cfg.common.empty_cache_freq
)
== 0
):
torch.cuda.empty_cache()
if self.cfg.common.fp16 or self.cfg.common.amp:
metrics.log_scalar(
"loss_scale",
(
self.optimizer.scaler.loss_scale
if self.cfg.common.fp16
else self.optimizer.scaler.get_scale()
),
priority=700,
round=4,
weight=0,
)
metrics.log_stop_time("train_wall")
return logging_output
@metrics.aggregate("valid")
def valid_step(self, sample, raise_oom=False):
"""Do forward pass in evaluation mode."""
if self.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("valid_step") # wait for all workers
# If EMA is enabled through store_ema=True
# and task.uses_ema is True, pass the EMA model as a keyword
# argument to the task.
extra_kwargs = {}
if self.cfg.ema.store_ema and getattr(self.task, "uses_ema", False):
extra_kwargs["ema_model"] = self.ema.get_model()
with torch.no_grad():
self.model.eval()
self.criterion.eval()
sample, is_dummy_batch = self._prepare_sample(sample)
try:
_loss, sample_size, logging_output = self.task.valid_step(
sample, self.model, self.criterion, **extra_kwargs
)
except RuntimeError as e:
if "out of memory" in str(e):
self._log_oom(e)
if not raise_oom:
logger.warning(
"ran out of memory in validation step, retrying batch"
)
for p in self.model.parameters():
if p.grad is not None:
p.grad = None # free some memory
if self.cuda:
torch.cuda.empty_cache()
return self.valid_step(sample, raise_oom=True)
raise e
logging_outputs = [logging_output]
if is_dummy_batch:
if torch.is_tensor(sample_size):
sample_size.zero_()
else:
sample_size *= 0.0
# gather logging outputs from all replicas
if self.data_parallel_world_size > 1:
logging_outputs, (sample_size,) = self._aggregate_logging_outputs(
logging_outputs,
sample_size,
ignore=is_dummy_batch,
)
# log validation stats
if self.tpu:
logging_outputs = self._xla_markstep_and_send_to_cpu(logging_outputs)
logging_output = self._reduce_and_log_stats(logging_outputs, sample_size)
return logging_output
def zero_grad(self):
self.optimizer.zero_grad()
def lr_step_begin_epoch(self, epoch):
"""Adjust the learning rate at the beginning of the epoch."""
self.lr_scheduler.step_begin_epoch(epoch)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def lr_reinit(self, total_updates, num_updates):
self.lr_scheduler.reinit(total_updates, num_updates)
def lr_step(self, epoch, val_loss=None):
"""Adjust the learning rate at the end of the epoch."""
self.lr_scheduler.step(epoch, val_loss)
# prefer updating the LR based on the number of steps
return self.lr_step_update()
def lr_step_update(self):
"""Update the learning rate after each update."""
new_lr = self.lr_scheduler.step_update(self.get_num_updates())
if isinstance(new_lr, dict):
for k, v in new_lr.items():
metrics.log_scalar(f"lr_{k}", v, weight=0, priority=300)
new_lr = new_lr.get("default", next(iter(new_lr.values())))
else:
metrics.log_scalar("lr", new_lr, weight=0, priority=300)
return new_lr
def get_lr(self):
"""Get the current learning rate."""
return self.optimizer.get_lr()
def get_model(self):
"""Get the (non-wrapped) model instance."""
return self._model
def get_criterion(self):
"""Get the (non-wrapped) criterion instance."""
return self._criterion
def get_meter(self, name):
"""[deprecated] Get a specific meter by name."""
from fairseq import meters
if "get_meter" not in self._warn_once:
self._warn_once.add("get_meter")
utils.deprecation_warning(
"Trainer.get_meter is deprecated. Please use fairseq.metrics instead."
)
train_meters = metrics.get_meters("train")
if train_meters is None:
train_meters = {}
if name == "train_loss" and "loss" in train_meters:
return train_meters["loss"]
elif name == "train_nll_loss":
# support for legacy train.py, which assumed this meter is
# always initialized
m = train_meters.get("nll_loss", None)
return m or meters.AverageMeter()
elif name == "wall":
# support for legacy train.py, which assumed this meter is
# always initialized
m = metrics.get_meter("default", "wall")
return m or meters.TimeMeter()
elif name == "wps":
m = metrics.get_meter("train", "wps")
return m or meters.TimeMeter()
elif name in {"valid_loss", "valid_nll_loss"}:
# support for legacy train.py, which assumed these meters
# are always initialized
k = name[len("valid_") :]
m = metrics.get_meter("valid", k)
return m or meters.AverageMeter()
elif name == "oom":
return meters.AverageMeter()
elif name in train_meters:
return train_meters[name]
return None
def get_num_updates(self):
"""Get the number of parameters updates."""
return self._num_updates
def set_num_updates(self, num_updates):
"""Set the number of parameters updates."""
self._num_updates = num_updates
self.lr_step_update()
if self.quantizer:
self.quantizer.step_update(self._num_updates)
metrics.log_scalar("num_updates", self._num_updates, weight=0, priority=200)
def clip_grad_norm(self, clip_norm):
def agg_norm_fn(total_norm):
total_norm = total_norm.cuda().float() ** 2
total_norm = distributed_utils.all_reduce(
total_norm, group=self.data_parallel_process_group
)
return total_norm ** 0.5
should_agg_norm = (
self.is_fsdp
and (
self.data_parallel_process_group is not None
or torch.distributed.is_initialized()
)
)
return self.optimizer.clip_grad_norm(
clip_norm, aggregate_norm_fn=agg_norm_fn if should_agg_norm else None
)
def cumulative_training_time(self):
if self._cumulative_training_time is None:
# single GPU
return self._local_cumulative_training_time()
else:
return self._cumulative_training_time
def _local_cumulative_training_time(self):
"""Aggregate training time in seconds."""
return time.time() - self._start_time + self._previous_training_time
def _fp_convert_sample(self, sample):
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
def apply_bfloat16(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.bfloat16)
return t
if self.cfg.common.fp16:
sample = utils.apply_to_sample(apply_half, sample)
if self.cfg.common.bf16:
sample = utils.apply_to_sample(apply_bfloat16, sample)
return sample
def _prepare_sample(self, sample, is_dummy=False):
if sample == "DUMMY":
raise Exception(
"Trying to use an uninitialized 'dummy' batch. This usually indicates "
"that the total number of batches is smaller than the number of "
"participating GPUs. Try reducing the batch size or using fewer GPUs."
)
if sample is None or len(sample) == 0:
assert (
self._dummy_batch is not None and len(self._dummy_batch) > 0
), "Invalid dummy batch: {}".format(self._dummy_batch)
sample, _ = self._prepare_sample(self._dummy_batch, is_dummy=True)
return sample, True
# Given that PCIe/NVLink bandwidth is significantly smaller than DRAM bandwidth
# it makes sense to do the format conversion on the CPU and then transfer
# a smaller buffer to the device. This also saves GPU memory capacity.
if self.cfg.common.on_cpu_convert_precision:
sample = self._fp_convert_sample(sample)
if self.cuda:
if self.pipeline_model_parallel:
if 'target' in sample:
sample['target'] = utils.move_to_cuda(sample['target'], device=self.last_device)
else:
sample = utils.move_to_cuda(sample)
elif self.tpu and is_dummy:
# the dummy batch may not be on the appropriate device
sample = utils.move_to_cuda(sample, device=self.device)
if not self.cfg.common.on_cpu_convert_precision:
sample = self._fp_convert_sample(sample)
if self._dummy_batch == "DUMMY":
self._dummy_batch = sample
return sample, False
def _set_seed(self):
# Set seed based on args.seed and the update number so that we get
# reproducible results when resuming from checkpoints
seed = self.cfg.common.seed + self.get_num_updates()
utils.set_torch_seed(seed)
def _sync_stats(self):
# Return True if it's using multiple GPUs and DDP or multiple GPUs with
# BMUF and it's a bmuf sync with warmup iterations completed before.
if self.data_parallel_world_size == 1:
return False
elif self.cfg.optimization.use_bmuf:
return (
self.get_num_updates() + 1
) % self.cfg.bmuf.global_sync_iter == 0 and (
self.get_num_updates() + 1
) > self.cfg.bmuf.warmup_iterations
else:
return True
def _log_oom(self, exc):
msg = "OOM: Ran out of memory with exception: {}".format(exc)
logger.warning(msg)
if torch.cuda.is_available() and hasattr(torch.cuda, "memory_summary"):
for device_idx in range(torch.cuda.device_count()):
logger.warning(torch.cuda.memory_summary(device=device_idx))
sys.stderr.flush()
def _aggregate_logging_outputs(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
if self.task.__class__.logging_outputs_can_be_summed(self.get_criterion()):
return self._fast_stat_sync_sum(
logging_outputs, *extra_stats_to_sum, ignore=ignore
)
else:
return self._all_gather_list_sync(
logging_outputs, *extra_stats_to_sum, ignore=ignore
)
def _all_gather_list_sync(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
"""
Sync logging outputs across workers. all_gather_list_sync is
suitable when logging outputs are complex types.
"""
if self.tpu:
raise NotImplementedError
if ignore:
logging_outputs = []
results = list(
zip(
*distributed_utils.all_gather_list(
[logging_outputs] + list(extra_stats_to_sum),
max_size=getattr(self.cfg.common, "all_gather_list_size", 16384),
group=self.data_parallel_process_group,
)
)
)
logging_outputs, extra_stats_to_sum = results[0], results[1:]
logging_outputs = list(chain.from_iterable(logging_outputs))
extra_stats_to_sum = [sum(s) for s in extra_stats_to_sum]
return logging_outputs, extra_stats_to_sum
def _fast_stat_sync_sum(
self,
logging_outputs: List[Dict[str, Any]],
*extra_stats_to_sum,
ignore=False,
):
"""
Sync logging outputs across workers. fast_stat_sync_sum is
faster than all_gather_list_sync, but is only suitable when
logging outputs are scalars and can be summed. Note that
*logging_outputs* cannot contain any nested dicts/lists.
"""
data = {}
for i, stat in enumerate(extra_stats_to_sum):
data["extra_stats_" + str(i)] = stat
if len(logging_outputs) > 0:
log_keys = list(logging_outputs[0].keys())
for k in log_keys:
if not ignore:
v = sum(log[k] for log in logging_outputs if k in log)
else:
v = logging_outputs[0][k]
v = torch.zeros_like(v) if torch.is_tensor(v) else 0
data["logging_outputs_" + k] = v
else:
log_keys = None
data = distributed_utils.all_reduce_dict(
data, device=self.device, group=self.data_parallel_process_group
)
extra_stats_to_sum = [
data["extra_stats_" + str(i)] for i in range(len(extra_stats_to_sum))
]
if log_keys is not None:
logging_outputs = [{k: data["logging_outputs_" + k] for k in log_keys}]
else:
logging_outputs = []
return logging_outputs, extra_stats_to_sum
def _check_grad_norms(self, grad_norm):
"""Check that grad norms are consistent across workers."""
if self._grad_norm_buf is not None:
self._grad_norm_buf.zero_()
self._grad_norm_buf[self.data_parallel_rank] = grad_norm
distributed_utils.all_reduce(
self._grad_norm_buf, group=self.data_parallel_process_group
)
def is_consistent(tensor):
max_abs_diff = torch.max(torch.abs(tensor - tensor[0]))
return (
(torch.isfinite(tensor).all()
and (max_abs_diff / (tensor[0] + 1e-6) < 1e-6).all())
or
(self.cfg.common.amp and not torch.isfinite(tensor).all())
# in case of amp non-finite grads are fine
)
if not is_consistent(self._grad_norm_buf):
pretty_detail = "\n".join(
"rank {:3d} = {:.8f}".format(r, n)
for r, n in enumerate(self._grad_norm_buf.tolist())
)
error_detail = "grad_norm across the workers:\n{}\n".format(
pretty_detail
)
# use FloatingPointError to trigger NanDetector
raise FloatingPointError(
"Fatal error: gradients are inconsistent between workers. "
"Try --ddp-backend=legacy_ddp. "
"Or are you mixing up different generation of GPUs in training?"
+ "\n"
+ "-" * 80
+ "\n{}\n".format(error_detail)
+ "-" * 80
)
def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None):
if grad_norm is not None and (
not torch.is_tensor(grad_norm) or torch.isfinite(grad_norm)
):
metrics.log_speed("ups", 1.0, priority=100, round=2)
metrics.log_scalar("gnorm", grad_norm, priority=400, round=3)
if self.cfg.optimization.clip_norm > 0:
metrics.log_scalar(
"clip",
torch.where(
grad_norm > self.cfg.optimization.clip_norm,
grad_norm.new_tensor(100),
grad_norm.new_tensor(0),
),
priority=500,
round=1,
)
with metrics.aggregate() as agg:
if logging_outputs is not None:
self.task.reduce_metrics(logging_outputs, self.get_criterion())
del logging_outputs
# extra warning for criterions that don't properly log a loss value
if "loss" not in agg:
if "loss" not in self._warn_once:
self._warn_once.add("loss")
logger.warning(
"Criterion.reduce_metrics did not log a 'loss' value, "
"which may break some functionality"
)
metrics.log_scalar("loss", -1)
# support legacy interface
if self.tpu:
logging_output = {}
else:
logging_output = agg.get_smoothed_values()
logging_output["sample_size"] = sample_size
for key_to_delete in ["ppl", "wps", "wpb", "bsz"]:
if key_to_delete in logging_output:
del logging_output[key_to_delete]
return logging_output
def _check_xla_compilation(self):
import torch_xla.debug.metrics as met
compile_stats = met.metric_data("CompileTime")
if compile_stats is None:
return
num_xla_compiles = compile_stats[0]
if num_xla_compiles > self._num_xla_compiles:
logger.warning(
"XLA compilation detected on device #{}; too many of these can lead "
"to slow training, but we expect a few in the beginning".format(
self.cfg.distributed_training.distributed_rank
)
)
self._num_xla_compiles = num_xla_compiles
def _xla_markstep_and_send_to_cpu(self, data=None):
import torch_xla.core.xla_model as xm
xm.mark_step()
if data is not None:
from fairseq.utils import xla_device_to_cpu
return xla_device_to_cpu(data)
def _catalog_shared_params(module, memo=None, prefix=""):
if memo is None:
first_call = True
memo = {}
else:
first_call = False
for name, param in module._parameters.items():
param_prefix = prefix + ("." if prefix else "") + name
if param not in memo:
memo[param] = []
memo[param].append(param_prefix)
for name, m in module._modules.items():
if m is None:
continue
submodule_prefix = prefix + ("." if prefix else "") + name
_catalog_shared_params(m, memo, submodule_prefix)
if first_call:
return [x for x in memo.values() if len(x) > 1]
def _get_module_by_path(module, path):
path = path.split(".")
for name in path:
module = getattr(module, name)
return module
def _set_module_by_path(module, path, value):
path = path.split(".")
for name in path[:-1]:
module = getattr(module, name)
setattr(module, path[-1], value)
|