Spaces:
Runtime error
Runtime error
File size: 6,876 Bytes
ee21b96 2915058 ee21b96 2915058 ee21b96 2915058 ee21b96 2915058 ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
from io import BytesIO
import logging
import warnings
import random
import functools
import torch
import base64
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms import functional as F
from PIL import Image, ImageFile
from zhconv import convert
import unicodedata
from data import data_utils
from data.ofa_dataset import OFADataset
ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
def collate(samples, pad_idx, eos_idx):
if len(samples) == 0:
return {}
def merge(key):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx=eos_idx,
)
id = np.array([s["id"] for s in samples])
src_tokens = merge("source")
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0)
patch_masks = torch.cat([sample['patch_mask'] for sample in samples])
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge("target")
tgt_lengths = torch.LongTensor([s["target"].ne(pad_idx).long().sum() for s in samples])
ntokens = tgt_lengths.sum().item()
if samples[0].get("prev_output_tokens", None) is not None:
prev_output_tokens = merge("prev_output_tokens")
else:
ntokens = src_lengths.sum().item()
batch = {
"id": id,
"nsentences": len(samples),
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
"patch_images": patch_images,
"patch_masks": patch_masks,
"prev_output_tokens": prev_output_tokens
},
"target": target,
}
return batch
def ocr_resize(img, patch_image_size, is_document=False, split='train'):
img = img.convert("RGB")
width, height = img.size
if is_document:
new_height, new_width = 64, 1920
else:
if width >= height:
new_width = max(64, patch_image_size)
new_height = max(64, int(patch_image_size * (height / width)))
if split != 'train':
top = int((patch_image_size - new_height) // 2)
else:
top = random.randint(0, patch_image_size - new_height)
bottom = patch_image_size - new_height - top
left, right = 0, 0
else:
new_height = max(64, patch_image_size)
new_width = max(64, int(patch_image_size * (width / height)))
if split != 'train':
left = int((patch_image_size - new_width) // 2)
else:
left = random.randint(0, patch_image_size - new_width)
right = patch_image_size - new_width - left
top, bottom = 0, 0
img_new = F.resize(
img,
[new_height, new_width],
interpolation=InterpolationMode.BICUBIC,
)
if is_document:
img_split = transforms.ToTensor()(img_new).chunk(4, dim=-1)
img_new = transforms.ToPILImage()(torch.cat(img_split, dim=-2))
new_width, new_height = img_new.size
top = random.randint(0, patch_image_size - new_height)
bottom = patch_image_size - new_height - top
left, right = 0, 0
img_new = F.pad(img_new, padding=[left, top, right, bottom], padding_mode="edge")
assert img_new.size == (patch_image_size, patch_image_size)
return img_new
class OcrDataset(OFADataset):
def __init__(
self,
split,
dataset,
bpe,
src_dict,
tgt_dict=None,
max_src_length=80,
max_tgt_length=30,
patch_image_size=224,
imagenet_default_mean_and_std=False,
is_document=False,
):
super().__init__(split, dataset, bpe, src_dict, tgt_dict)
self.max_src_length = max_src_length
self.max_tgt_length = max_tgt_length
self.patch_image_size = patch_image_size
if imagenet_default_mean_and_std:
mean = IMAGENET_DEFAULT_MEAN
std = IMAGENET_DEFAULT_STD
else:
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
self.patch_resize_transform = transforms.Compose(
[
lambda image: ocr_resize(
image, patch_image_size, is_document=is_document, split=split,
),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
]
)
self.bpe = bpe
if type(bpe).__name__ == 'GPT2BPE':
self.prompt = " what are the texts on the image?"
elif type(bpe).__name__ == 'BertBPE':
self.prompt = "图片上的文å—是什么?"
def __getitem__(self, index):
uniq_id, image, caption = self.dataset[index]
image = Image.open(BytesIO(base64.urlsafe_b64decode(image)))
patch_image = self.patch_resize_transform(image)
patch_mask = torch.tensor([True])
caption = unicodedata.normalize("NFKC", convert(caption, "zh-hans"))
if type(self.bpe).__name__ == 'GPT2BPE':
caption_token_list = caption.lower().strip().split()
tgt_caption = ' '.join(caption_token_list[:self.max_tgt_length])
elif type(self.bpe).__name__ == 'BertBPE':
tgt_caption = caption[: self.max_tgt_length].lower()
src_item = self.encode_text(self.prompt)
tgt_item = self.encode_text(" {}".format(tgt_caption))
src_item = torch.cat([self.bos_item, src_item, self.eos_item])
target_item = torch.cat([tgt_item, self.eos_item])
prev_output_item = torch.cat([self.bos_item, tgt_item])
example = {
"id": uniq_id,
"source": src_item,
"patch_image": patch_image,
"patch_mask": patch_mask,
"target": target_item,
"prev_output_tokens": prev_output_item,
}
return example
def collater(self, samples, pad_to_length=None):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch containing the data required for the task
"""
return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
|