File size: 11,312 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Score raw text with a trained model.
"""

from collections import namedtuple
import logging
from multiprocessing import Pool
import sys
import os
import random

import numpy as np
import sacrebleu
import torch

from fairseq import checkpoint_utils, options, utils


logger = logging.getLogger("fairseq_cli.drnmt_rerank")
logger.setLevel(logging.INFO)

Batch = namedtuple("Batch", "ids src_tokens src_lengths")


pool_init_variables = {}


def init_loaded_scores(mt_scores, model_scores, hyp, ref):
    global pool_init_variables
    pool_init_variables["mt_scores"] = mt_scores
    pool_init_variables["model_scores"] = model_scores
    pool_init_variables["hyp"] = hyp
    pool_init_variables["ref"] = ref


def parse_fairseq_gen(filename, task):
    source = {}
    hypos = {}
    scores = {}
    with open(filename, "r", encoding="utf-8") as f:
        for line in f:
            line = line.strip()
            if line.startswith("S-"):  # source
                uid, text = line.split("\t", 1)
                uid = int(uid[2:])
                source[uid] = text
            elif line.startswith("D-"):  # hypo
                uid, score, text = line.split("\t", 2)
                uid = int(uid[2:])
                if uid not in hypos:
                    hypos[uid] = []
                    scores[uid] = []
                hypos[uid].append(text)
                scores[uid].append(float(score))
            else:
                continue

    source_out = [source[i] for i in range(len(hypos))]
    hypos_out = [h for i in range(len(hypos)) for h in hypos[i]]
    scores_out = [s for i in range(len(scores)) for s in scores[i]]

    return source_out, hypos_out, scores_out


def read_target(filename):
    with open(filename, "r", encoding="utf-8") as f:
        output = [line.strip() for line in f]
    return output


def make_batches(args, src, hyp, task, max_positions, encode_fn):
    assert len(src) * args.beam == len(
        hyp
    ), f"Expect {len(src) * args.beam} hypotheses for {len(src)} source sentences with beam size {args.beam}. Got {len(hyp)} hypotheses intead."
    hyp_encode = [
        task.source_dictionary.encode_line(encode_fn(h), add_if_not_exist=False).long()
        for h in hyp
    ]
    if task.cfg.include_src:
        src_encode = [
            task.source_dictionary.encode_line(
                encode_fn(s), add_if_not_exist=False
            ).long()
            for s in src
        ]
        tokens = [(src_encode[i // args.beam], h) for i, h in enumerate(hyp_encode)]
        lengths = [(t1.numel(), t2.numel()) for t1, t2 in tokens]
    else:
        tokens = [(h,) for h in hyp_encode]
        lengths = [(h.numel(),) for h in hyp_encode]

    itr = task.get_batch_iterator(
        dataset=task.build_dataset_for_inference(tokens, lengths),
        max_tokens=args.max_tokens,
        max_sentences=args.batch_size,
        max_positions=max_positions,
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
    ).next_epoch_itr(shuffle=False)

    for batch in itr:
        yield Batch(
            ids=batch["id"],
            src_tokens=batch["net_input"]["src_tokens"],
            src_lengths=batch["net_input"]["src_lengths"],
        )


def decode_rerank_scores(args):
    if args.max_tokens is None and args.batch_size is None:
        args.batch_size = 1

    logger.info(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load ensemble
    logger.info("loading model(s) from {}".format(args.path))
    models, _model_args, task = checkpoint_utils.load_model_ensemble_and_task(
        [args.path], arg_overrides=eval(args.model_overrides),
    )

    for model in models:
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Initialize generator
    generator = task.build_generator(args)

    # Handle tokenization and BPE
    tokenizer = task.build_tokenizer(args)
    bpe = task.build_bpe(args)

    def encode_fn(x):
        if tokenizer is not None:
            x = tokenizer.encode(x)
        if bpe is not None:
            x = bpe.encode(x)
        return x

    max_positions = utils.resolve_max_positions(
        task.max_positions(), *[model.max_positions() for model in models]
    )

    src, hyp, mt_scores = parse_fairseq_gen(args.in_text, task)
    model_scores = {}
    logger.info("decode reranker score")
    for batch in make_batches(args, src, hyp, task, max_positions, encode_fn):
        src_tokens = batch.src_tokens
        src_lengths = batch.src_lengths
        if use_cuda:
            src_tokens = src_tokens.cuda()
            src_lengths = src_lengths.cuda()

        sample = {
            "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths},
        }
        scores = task.inference_step(generator, models, sample)

        for id, sc in zip(batch.ids.tolist(), scores.tolist()):
            model_scores[id] = sc[0]

    model_scores = [model_scores[i] for i in range(len(model_scores))]

    return src, hyp, mt_scores, model_scores


def get_score(mt_s, md_s, w1, lp, tgt_len):
    return mt_s / (tgt_len ** lp) * w1 + md_s


def get_best_hyps(mt_scores, md_scores, hypos, fw_weight, lenpen, beam):
    assert len(mt_scores) == len(md_scores) and len(mt_scores) == len(hypos)
    hypo_scores = []
    best_hypos = []
    best_scores = []
    offset = 0
    for i in range(len(hypos)):
        tgt_len = len(hypos[i].split())
        hypo_scores.append(
            get_score(mt_scores[i], md_scores[i], fw_weight, lenpen, tgt_len)
        )

        if (i + 1) % beam == 0:
            max_i = np.argmax(hypo_scores)
            best_hypos.append(hypos[offset + max_i])
            best_scores.append(hypo_scores[max_i])
            hypo_scores = []
            offset += beam
    return best_hypos, best_scores


def eval_metric(args, hypos, ref):
    if args.metric == "bleu":
        score = sacrebleu.corpus_bleu(hypos, [ref]).score
    else:
        score = sacrebleu.corpus_ter(hypos, [ref]).score

    return score


def score_target_hypo(args, fw_weight, lp):
    mt_scores = pool_init_variables["mt_scores"]
    model_scores = pool_init_variables["model_scores"]
    hyp = pool_init_variables["hyp"]
    ref = pool_init_variables["ref"]
    best_hypos, _ = get_best_hyps(
        mt_scores, model_scores, hyp, fw_weight, lp, args.beam
    )
    rerank_eval = None
    if ref:
        rerank_eval = eval_metric(args, best_hypos, ref)
        print(f"fw_weight {fw_weight}, lenpen {lp}, eval {rerank_eval}")

    return rerank_eval


def print_result(best_scores, best_hypos, output_file):
    for i, (s, h) in enumerate(zip(best_scores, best_hypos)):
        print(f"{i}\t{s}\t{h}", file=output_file)


def main(args):
    utils.import_user_module(args)

    src, hyp, mt_scores, model_scores = decode_rerank_scores(args)

    assert (
        not args.tune or args.target_text is not None
    ), "--target-text has to be set when tuning weights"
    if args.target_text:
        ref = read_target(args.target_text)
        assert len(src) == len(
            ref
        ), f"different numbers of source and target sentences ({len(src)} vs. {len(ref)})"

        orig_best_hypos = [hyp[i] for i in range(0, len(hyp), args.beam)]
        orig_eval = eval_metric(args, orig_best_hypos, ref)

    if args.tune:
        logger.info("tune weights for reranking")

        random_params = np.array(
            [
                [
                    random.uniform(
                        args.lower_bound_fw_weight, args.upper_bound_fw_weight
                    ),
                    random.uniform(args.lower_bound_lenpen, args.upper_bound_lenpen),
                ]
                for k in range(args.num_trials)
            ]
        )

        logger.info("launching pool")
        with Pool(
            32,
            initializer=init_loaded_scores,
            initargs=(mt_scores, model_scores, hyp, ref),
        ) as p:
            rerank_scores = p.starmap(
                score_target_hypo,
                [
                    (args, random_params[i][0], random_params[i][1],)
                    for i in range(args.num_trials)
                ],
            )
        if args.metric == "bleu":
            best_index = np.argmax(rerank_scores)
        else:
            best_index = np.argmin(rerank_scores)
        best_fw_weight = random_params[best_index][0]
        best_lenpen = random_params[best_index][1]
    else:
        assert (
            args.lenpen is not None and args.fw_weight is not None
        ), "--lenpen and --fw-weight should be set"
        best_fw_weight, best_lenpen = args.fw_weight, args.lenpen

    best_hypos, best_scores = get_best_hyps(
        mt_scores, model_scores, hyp, best_fw_weight, best_lenpen, args.beam
    )

    if args.results_path is not None:
        os.makedirs(args.results_path, exist_ok=True)
        output_path = os.path.join(
            args.results_path, "generate-{}.txt".format(args.gen_subset),
        )
        with open(output_path, "w", buffering=1, encoding="utf-8") as o:
            print_result(best_scores, best_hypos, o)
    else:
        print_result(best_scores, best_hypos, sys.stdout)

    if args.target_text:
        rerank_eval = eval_metric(args, best_hypos, ref)
        print(f"before reranking, {args.metric.upper()}:", orig_eval)
        print(
            f"after reranking with fw_weight={best_fw_weight}, lenpen={best_lenpen}, {args.metric.upper()}:",
            rerank_eval,
        )


def cli_main():
    parser = options.get_generation_parser(interactive=True)

    parser.add_argument(
        "--in-text",
        default=None,
        required=True,
        help="text from fairseq-interactive output, containing source sentences and hypotheses",
    )
    parser.add_argument("--target-text", default=None, help="reference text")
    parser.add_argument("--metric", type=str, choices=["bleu", "ter"], default="bleu")
    parser.add_argument(
        "--tune",
        action="store_true",
        help="if set, tune weights on fw scores and lenpen instead of applying fixed weights for reranking",
    )
    parser.add_argument(
        "--lower-bound-fw-weight",
        default=0.0,
        type=float,
        help="lower bound of search space",
    )
    parser.add_argument(
        "--upper-bound-fw-weight",
        default=3,
        type=float,
        help="upper bound of search space",
    )
    parser.add_argument(
        "--lower-bound-lenpen",
        default=0.0,
        type=float,
        help="lower bound of search space",
    )
    parser.add_argument(
        "--upper-bound-lenpen",
        default=3,
        type=float,
        help="upper bound of search space",
    )
    parser.add_argument(
        "--fw-weight", type=float, default=None, help="weight on the fw model score"
    )
    parser.add_argument(
        "--num-trials",
        default=1000,
        type=int,
        help="number of trials to do for random search",
    )

    args = options.parse_args_and_arch(parser)
    main(args)


if __name__ == "__main__":
    cli_main()