File size: 6,078 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python3

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderModel,
    register_model,
    register_model_architecture,
)
from fairseq.modules.fairseq_dropout import FairseqDropout


default_conv_enc_config = """[
    (400, 13, 170, 0.2),
    (440, 14, 0, 0.214),
    (484, 15, 0, 0.22898),
    (532, 16, 0, 0.2450086),
    (584, 17, 0, 0.262159202),
    (642, 18, 0, 0.28051034614),
    (706, 19, 0, 0.30014607037),
    (776, 20, 0, 0.321156295296),
    (852, 21, 0, 0.343637235966),
    (936, 22, 0, 0.367691842484),
    (1028, 23, 0, 0.393430271458),
    (1130, 24, 0, 0.42097039046),
    (1242, 25, 0, 0.450438317792),
    (1366, 26, 0, 0.481969000038),
    (1502, 27, 0, 0.51570683004),
    (1652, 28, 0, 0.551806308143),
    (1816, 29, 0, 0.590432749713),
]"""


@register_model("asr_w2l_conv_glu_encoder")
class W2lConvGluEncoderModel(FairseqEncoderModel):
    def __init__(self, encoder):
        super().__init__(encoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        parser.add_argument(
            "--input-feat-per-channel",
            type=int,
            metavar="N",
            help="encoder input dimension per input channel",
        )
        parser.add_argument(
            "--in-channels",
            type=int,
            metavar="N",
            help="number of encoder input channels",
        )
        parser.add_argument(
            "--conv-enc-config",
            type=str,
            metavar="EXPR",
            help="""
    an array of tuples each containing the configuration of one conv layer
    [(out_channels, kernel_size, padding, dropout), ...]
            """,
        )

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""
        conv_enc_config = getattr(args, "conv_enc_config", default_conv_enc_config)
        encoder = W2lConvGluEncoder(
            vocab_size=len(task.target_dictionary),
            input_feat_per_channel=args.input_feat_per_channel,
            in_channels=args.in_channels,
            conv_enc_config=eval(conv_enc_config),
        )
        return cls(encoder)

    def get_normalized_probs(self, net_output, log_probs, sample=None):
        lprobs = super().get_normalized_probs(net_output, log_probs, sample)
        lprobs.batch_first = False
        return lprobs


class W2lConvGluEncoder(FairseqEncoder):
    def __init__(
        self, vocab_size, input_feat_per_channel, in_channels, conv_enc_config
    ):
        super().__init__(None)

        self.input_dim = input_feat_per_channel
        if in_channels != 1:
            raise ValueError("only 1 input channel is currently supported")

        self.conv_layers = nn.ModuleList()
        self.linear_layers = nn.ModuleList()
        self.dropouts = []
        cur_channels = input_feat_per_channel

        for out_channels, kernel_size, padding, dropout in conv_enc_config:
            layer = nn.Conv1d(cur_channels, out_channels, kernel_size, padding=padding)
            layer.weight.data.mul_(math.sqrt(3))  # match wav2letter init
            self.conv_layers.append(nn.utils.weight_norm(layer))
            self.dropouts.append(
                FairseqDropout(dropout, module_name=self.__class__.__name__)
            )
            if out_channels % 2 != 0:
                raise ValueError("odd # of out_channels is incompatible with GLU")
            cur_channels = out_channels // 2  # halved by GLU

        for out_channels in [2 * cur_channels, vocab_size]:
            layer = nn.Linear(cur_channels, out_channels)
            layer.weight.data.mul_(math.sqrt(3))
            self.linear_layers.append(nn.utils.weight_norm(layer))
            cur_channels = out_channels // 2

    def forward(self, src_tokens, src_lengths, **kwargs):

        """
        src_tokens: padded tensor (B, T, C * feat)
        src_lengths: tensor of original lengths of input utterances (B,)
        """
        B, T, _ = src_tokens.size()
        x = src_tokens.transpose(1, 2).contiguous()  # (B, feat, T) assuming C == 1

        for layer_idx in range(len(self.conv_layers)):
            x = self.conv_layers[layer_idx](x)
            x = F.glu(x, dim=1)
            x = self.dropouts[layer_idx](x)

        x = x.transpose(1, 2).contiguous()  # (B, T, 908)
        x = self.linear_layers[0](x)
        x = F.glu(x, dim=2)
        x = self.dropouts[-1](x)
        x = self.linear_layers[1](x)

        assert x.size(0) == B
        assert x.size(1) == T

        encoder_out = x.transpose(0, 1)  # (T, B, vocab_size)

        # need to debug this -- find a simpler/elegant way in pytorch APIs
        encoder_padding_mask = (
            torch.arange(T).view(1, T).expand(B, -1).to(x.device)
            >= src_lengths.view(B, 1).expand(-1, T)
        ).t()  # (B x T) -> (T x B)

        return {
            "encoder_out": encoder_out,  # (T, B, vocab_size)
            "encoder_padding_mask": encoder_padding_mask,  # (T, B)
        }

    def reorder_encoder_out(self, encoder_out, new_order):
        encoder_out["encoder_out"] = encoder_out["encoder_out"].index_select(
            1, new_order
        )
        encoder_out["encoder_padding_mask"] = encoder_out[
            "encoder_padding_mask"
        ].index_select(1, new_order)
        return encoder_out

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return (1e6, 1e6)  # an arbitrary large number


@register_model_architecture("asr_w2l_conv_glu_encoder", "w2l_conv_glu_enc")
def w2l_conv_glu_enc(args):
    args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
    args.in_channels = getattr(args, "in_channels", 1)
    args.conv_enc_config = getattr(args, "conv_enc_config", default_conv_enc_config)