Spaces:
Runtime error
Runtime error
File size: 17,396 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Flashlight decoders.
"""
import gc
import itertools as it
import os.path as osp
from typing import List
import warnings
from collections import deque, namedtuple
import numpy as np
import torch
from examples.speech_recognition.data.replabels import unpack_replabels
from fairseq import tasks
from fairseq.utils import apply_to_sample
from omegaconf import open_dict
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
try:
from flashlight.lib.text.dictionary import create_word_dict, load_words
from flashlight.lib.sequence.criterion import CpuViterbiPath, get_data_ptr_as_bytes
from flashlight.lib.text.decoder import (
CriterionType,
LexiconDecoderOptions,
KenLM,
LM,
LMState,
SmearingMode,
Trie,
LexiconDecoder,
)
except:
warnings.warn(
"flashlight python bindings are required to use this functionality. Please install from https://github.com/facebookresearch/flashlight/tree/master/bindings/python"
)
LM = object
LMState = object
class W2lDecoder(object):
def __init__(self, args, tgt_dict):
self.tgt_dict = tgt_dict
self.vocab_size = len(tgt_dict)
self.nbest = args.nbest
# criterion-specific init
self.criterion_type = CriterionType.CTC
self.blank = (
tgt_dict.index("<ctc_blank>")
if "<ctc_blank>" in tgt_dict.indices
else tgt_dict.bos()
)
if "<sep>" in tgt_dict.indices:
self.silence = tgt_dict.index("<sep>")
elif "|" in tgt_dict.indices:
self.silence = tgt_dict.index("|")
else:
self.silence = tgt_dict.eos()
self.asg_transitions = None
def generate(self, models, sample, **unused):
"""Generate a batch of inferences."""
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
}
emissions = self.get_emissions(models, encoder_input)
return self.decode(emissions)
def get_emissions(self, models, encoder_input):
"""Run encoder and normalize emissions"""
model = models[0]
encoder_out = model(**encoder_input)
if hasattr(model, "get_logits"):
emissions = model.get_logits(encoder_out) # no need to normalize emissions
else:
emissions = model.get_normalized_probs(encoder_out, log_probs=True)
return emissions.transpose(0, 1).float().cpu().contiguous()
def get_tokens(self, idxs):
"""Normalize tokens by handling CTC blank, ASG replabels, etc."""
idxs = (g[0] for g in it.groupby(idxs))
idxs = filter(lambda x: x != self.blank, idxs)
return torch.LongTensor(list(idxs))
class W2lViterbiDecoder(W2lDecoder):
def __init__(self, args, tgt_dict):
super().__init__(args, tgt_dict)
def decode(self, emissions):
B, T, N = emissions.size()
hypos = []
if self.asg_transitions is None:
transitions = torch.FloatTensor(N, N).zero_()
else:
transitions = torch.FloatTensor(self.asg_transitions).view(N, N)
viterbi_path = torch.IntTensor(B, T)
workspace = torch.ByteTensor(CpuViterbiPath.get_workspace_size(B, T, N))
CpuViterbiPath.compute(
B,
T,
N,
get_data_ptr_as_bytes(emissions),
get_data_ptr_as_bytes(transitions),
get_data_ptr_as_bytes(viterbi_path),
get_data_ptr_as_bytes(workspace),
)
return [
[{"tokens": self.get_tokens(viterbi_path[b].tolist()), "score": 0}]
for b in range(B)
]
class W2lKenLMDecoder(W2lDecoder):
def __init__(self, args, tgt_dict):
super().__init__(args, tgt_dict)
self.unit_lm = getattr(args, "unit_lm", False)
if args.lexicon:
self.lexicon = load_words(args.lexicon)
self.word_dict = create_word_dict(self.lexicon)
self.unk_word = self.word_dict.get_index("<unk>")
self.lm = KenLM(args.kenlm_model, self.word_dict)
self.trie = Trie(self.vocab_size, self.silence)
start_state = self.lm.start(False)
for i, (word, spellings) in enumerate(self.lexicon.items()):
word_idx = self.word_dict.get_index(word)
_, score = self.lm.score(start_state, word_idx)
for spelling in spellings:
spelling_idxs = [tgt_dict.index(token) for token in spelling]
assert (
tgt_dict.unk() not in spelling_idxs
), f"{spelling} {spelling_idxs}"
self.trie.insert(spelling_idxs, word_idx, score)
self.trie.smear(SmearingMode.MAX)
self.decoder_opts = LexiconDecoderOptions(
beam_size=args.beam,
beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
beam_threshold=args.beam_threshold,
lm_weight=args.lm_weight,
word_score=args.word_score,
unk_score=args.unk_weight,
sil_score=args.sil_weight,
log_add=False,
criterion_type=self.criterion_type,
)
if self.asg_transitions is None:
N = 768
# self.asg_transitions = torch.FloatTensor(N, N).zero_()
self.asg_transitions = []
self.decoder = LexiconDecoder(
self.decoder_opts,
self.trie,
self.lm,
self.silence,
self.blank,
self.unk_word,
self.asg_transitions,
self.unit_lm,
)
else:
assert args.unit_lm, "lexicon free decoding can only be done with a unit language model"
from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions
d = {w: [[w]] for w in tgt_dict.symbols}
self.word_dict = create_word_dict(d)
self.lm = KenLM(args.kenlm_model, self.word_dict)
self.decoder_opts = LexiconFreeDecoderOptions(
beam_size=args.beam,
beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
beam_threshold=args.beam_threshold,
lm_weight=args.lm_weight,
sil_score=args.sil_weight,
log_add=False,
criterion_type=self.criterion_type,
)
self.decoder = LexiconFreeDecoder(
self.decoder_opts, self.lm, self.silence, self.blank, []
)
def get_timesteps(self, token_idxs: List[int]) -> List[int]:
"""Returns frame numbers corresponding to every non-blank token.
Parameters
----------
token_idxs : List[int]
IDs of decoded tokens.
Returns
-------
List[int]
Frame numbers corresponding to every non-blank token.
"""
timesteps = []
for i, token_idx in enumerate(token_idxs):
if token_idx == self.blank:
continue
if i == 0 or token_idx != token_idxs[i-1]:
timesteps.append(i)
return timesteps
def decode(self, emissions):
B, T, N = emissions.size()
hypos = []
for b in range(B):
emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
results = self.decoder.decode(emissions_ptr, T, N)
nbest_results = results[: self.nbest]
hypos.append(
[
{
"tokens": self.get_tokens(result.tokens),
"score": result.score,
"timesteps": self.get_timesteps(result.tokens),
"words": [
self.word_dict.get_entry(x) for x in result.words if x >= 0
],
}
for result in nbest_results
]
)
return hypos
FairseqLMState = namedtuple("FairseqLMState", ["prefix", "incremental_state", "probs"])
class FairseqLM(LM):
def __init__(self, dictionary, model):
LM.__init__(self)
self.dictionary = dictionary
self.model = model
self.unk = self.dictionary.unk()
self.save_incremental = False # this currently does not work properly
self.max_cache = 20_000
model.cuda()
model.eval()
model.make_generation_fast_()
self.states = {}
self.stateq = deque()
def start(self, start_with_nothing):
state = LMState()
prefix = torch.LongTensor([[self.dictionary.eos()]])
incremental_state = {} if self.save_incremental else None
with torch.no_grad():
res = self.model(prefix.cuda(), incremental_state=incremental_state)
probs = self.model.get_normalized_probs(res, log_probs=True, sample=None)
if incremental_state is not None:
incremental_state = apply_to_sample(lambda x: x.cpu(), incremental_state)
self.states[state] = FairseqLMState(
prefix.numpy(), incremental_state, probs[0, -1].cpu().numpy()
)
self.stateq.append(state)
return state
def score(self, state: LMState, token_index: int, no_cache: bool = False):
"""
Evaluate language model based on the current lm state and new word
Parameters:
-----------
state: current lm state
token_index: index of the word
(can be lexicon index then you should store inside LM the
mapping between indices of lexicon and lm, or lm index of a word)
Returns:
--------
(LMState, float): pair of (new state, score for the current word)
"""
curr_state = self.states[state]
def trim_cache(targ_size):
while len(self.stateq) > targ_size:
rem_k = self.stateq.popleft()
rem_st = self.states[rem_k]
rem_st = FairseqLMState(rem_st.prefix, None, None)
self.states[rem_k] = rem_st
if curr_state.probs is None:
new_incremental_state = (
curr_state.incremental_state.copy()
if curr_state.incremental_state is not None
else None
)
with torch.no_grad():
if new_incremental_state is not None:
new_incremental_state = apply_to_sample(
lambda x: x.cuda(), new_incremental_state
)
elif self.save_incremental:
new_incremental_state = {}
res = self.model(
torch.from_numpy(curr_state.prefix).cuda(),
incremental_state=new_incremental_state,
)
probs = self.model.get_normalized_probs(
res, log_probs=True, sample=None
)
if new_incremental_state is not None:
new_incremental_state = apply_to_sample(
lambda x: x.cpu(), new_incremental_state
)
curr_state = FairseqLMState(
curr_state.prefix, new_incremental_state, probs[0, -1].cpu().numpy()
)
if not no_cache:
self.states[state] = curr_state
self.stateq.append(state)
score = curr_state.probs[token_index].item()
trim_cache(self.max_cache)
outstate = state.child(token_index)
if outstate not in self.states and not no_cache:
prefix = np.concatenate(
[curr_state.prefix, torch.LongTensor([[token_index]])], -1
)
incr_state = curr_state.incremental_state
self.states[outstate] = FairseqLMState(prefix, incr_state, None)
if token_index == self.unk:
score = float("-inf")
return outstate, score
def finish(self, state: LMState):
"""
Evaluate eos for language model based on the current lm state
Returns:
--------
(LMState, float): pair of (new state, score for the current word)
"""
return self.score(state, self.dictionary.eos())
def empty_cache(self):
self.states = {}
self.stateq = deque()
gc.collect()
class W2lFairseqLMDecoder(W2lDecoder):
def __init__(self, args, tgt_dict):
super().__init__(args, tgt_dict)
self.unit_lm = getattr(args, "unit_lm", False)
self.lexicon = load_words(args.lexicon) if args.lexicon else None
self.idx_to_wrd = {}
checkpoint = torch.load(args.kenlm_model, map_location="cpu")
if "cfg" in checkpoint and checkpoint["cfg"] is not None:
lm_args = checkpoint["cfg"]
else:
lm_args = convert_namespace_to_omegaconf(checkpoint["args"])
with open_dict(lm_args.task):
lm_args.task.data = osp.dirname(args.kenlm_model)
task = tasks.setup_task(lm_args.task)
model = task.build_model(lm_args.model)
model.load_state_dict(checkpoint["model"], strict=False)
self.trie = Trie(self.vocab_size, self.silence)
self.word_dict = task.dictionary
self.unk_word = self.word_dict.unk()
self.lm = FairseqLM(self.word_dict, model)
if self.lexicon:
start_state = self.lm.start(False)
for i, (word, spellings) in enumerate(self.lexicon.items()):
if self.unit_lm:
word_idx = i
self.idx_to_wrd[i] = word
score = 0
else:
word_idx = self.word_dict.index(word)
_, score = self.lm.score(start_state, word_idx, no_cache=True)
for spelling in spellings:
spelling_idxs = [tgt_dict.index(token) for token in spelling]
assert (
tgt_dict.unk() not in spelling_idxs
), f"{spelling} {spelling_idxs}"
self.trie.insert(spelling_idxs, word_idx, score)
self.trie.smear(SmearingMode.MAX)
self.decoder_opts = LexiconDecoderOptions(
beam_size=args.beam,
beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
beam_threshold=args.beam_threshold,
lm_weight=args.lm_weight,
word_score=args.word_score,
unk_score=args.unk_weight,
sil_score=args.sil_weight,
log_add=False,
criterion_type=self.criterion_type,
)
self.decoder = LexiconDecoder(
self.decoder_opts,
self.trie,
self.lm,
self.silence,
self.blank,
self.unk_word,
[],
self.unit_lm,
)
else:
assert args.unit_lm, "lexicon free decoding can only be done with a unit language model"
from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions
d = {w: [[w]] for w in tgt_dict.symbols}
self.word_dict = create_word_dict(d)
self.lm = KenLM(args.kenlm_model, self.word_dict)
self.decoder_opts = LexiconFreeDecoderOptions(
beam_size=args.beam,
beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))),
beam_threshold=args.beam_threshold,
lm_weight=args.lm_weight,
sil_score=args.sil_weight,
log_add=False,
criterion_type=self.criterion_type,
)
self.decoder = LexiconFreeDecoder(
self.decoder_opts, self.lm, self.silence, self.blank, []
)
def decode(self, emissions):
B, T, N = emissions.size()
hypos = []
def idx_to_word(idx):
if self.unit_lm:
return self.idx_to_wrd[idx]
else:
return self.word_dict[idx]
def make_hypo(result):
hypo = {"tokens": self.get_tokens(result.tokens), "score": result.score}
if self.lexicon:
hypo["words"] = [idx_to_word(x) for x in result.words if x >= 0]
return hypo
for b in range(B):
emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0)
results = self.decoder.decode(emissions_ptr, T, N)
nbest_results = results[: self.nbest]
hypos.append([make_hypo(result) for result in nbest_results])
self.lm.empty_cache()
return hypos
|