File size: 7,020 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
Helper script to pre-compute embeddings for a flashlight (previously called wav2letter++) dataset
"""

import argparse
import glob
import os
from shutil import copy

import h5py
import numpy as np
import soundfile as sf
import torch
import tqdm
import fairseq
from torch import nn


def read_audio(fname):
    """ Load an audio file and return PCM along with the sample rate """

    wav, sr = sf.read(fname)
    assert sr == 16e3

    return wav, 16e3


class PretrainedWav2VecModel(nn.Module):
    def __init__(self, fname):
        super().__init__()

        model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([fname])
        model = model[0]
        model.eval()

        self.model = model

    def forward(self, x):
        with torch.no_grad():
            z = self.model.feature_extractor(x)
            if isinstance(z, tuple):
                z = z[0]
            c = self.model.feature_aggregator(z)
        return z, c


class EmbeddingWriterConfig(argparse.ArgumentParser):
    def __init__(self):
        super().__init__("Pre-compute embeddings for flashlight datasets")

        kwargs = {"action": "store", "type": str, "required": True}

        self.add_argument("--input", "-i", help="Input Directory", **kwargs)
        self.add_argument("--output", "-o", help="Output Directory", **kwargs)
        self.add_argument("--model", help="Path to model checkpoint", **kwargs)
        self.add_argument("--split", help="Dataset Splits", nargs="+", **kwargs)
        self.add_argument(
            "--ext", default="wav", required=False, help="Audio file extension"
        )

        self.add_argument(
            "--no-copy-labels",
            action="store_true",
            help="Do not copy label files. Useful for large datasets, use --targetdir in flashlight then.",
        )
        self.add_argument(
            "--use-feat",
            action="store_true",
            help="Use the feature vector ('z') instead of context vector ('c') for features",
        )
        self.add_argument("--gpu", help="GPU to use", default=0, type=int)


class Prediction:
    """ Lightweight wrapper around a fairspeech embedding model """

    def __init__(self, fname, gpu=0):
        self.gpu = gpu
        self.model = PretrainedWav2VecModel(fname).cuda(gpu)

    def __call__(self, x):
        x = torch.from_numpy(x).float().cuda(self.gpu)
        with torch.no_grad():
            z, c = self.model(x.unsqueeze(0))

        return z.squeeze(0).cpu().numpy(), c.squeeze(0).cpu().numpy()


class H5Writer:
    """ Write features as hdf5 file in flashlight compatible format """

    def __init__(self, fname):
        self.fname = fname
        os.makedirs(os.path.dirname(self.fname), exist_ok=True)

    def write(self, data):
        channel, T = data.shape

        with h5py.File(self.fname, "w") as out_ds:
            data = data.T.flatten()
            out_ds["features"] = data
            out_ds["info"] = np.array([16e3 // 160, T, channel])


class EmbeddingDatasetWriter(object):
    """Given a model and a flashlight dataset, pre-compute and store embeddings

    Args:
        input_root, str :
            Path to the flashlight dataset
        output_root, str :
            Desired output directory. Will be created if non-existent
        split, str :
            Dataset split
    """

    def __init__(
        self,
        input_root,
        output_root,
        split,
        model_fname,
        extension="wav",
        gpu=0,
        verbose=False,
        use_feat=False,
    ):

        assert os.path.exists(model_fname)

        self.model_fname = model_fname
        self.model = Prediction(self.model_fname, gpu)

        self.input_root = input_root
        self.output_root = output_root
        self.split = split
        self.verbose = verbose
        self.extension = extension
        self.use_feat = use_feat

        assert os.path.exists(self.input_path), "Input path '{}' does not exist".format(
            self.input_path
        )

    def _progress(self, iterable, **kwargs):
        if self.verbose:
            return tqdm.tqdm(iterable, **kwargs)
        return iterable

    def require_output_path(self, fname=None):
        path = self.get_output_path(fname)
        os.makedirs(path, exist_ok=True)

    @property
    def input_path(self):
        return self.get_input_path()

    @property
    def output_path(self):
        return self.get_output_path()

    def get_input_path(self, fname=None):
        if fname is None:
            return os.path.join(self.input_root, self.split)
        return os.path.join(self.get_input_path(), fname)

    def get_output_path(self, fname=None):
        if fname is None:
            return os.path.join(self.output_root, self.split)
        return os.path.join(self.get_output_path(), fname)

    def copy_labels(self):
        self.require_output_path()

        labels = list(
            filter(
                lambda x: self.extension not in x, glob.glob(self.get_input_path("*"))
            )
        )
        for fname in tqdm.tqdm(labels):
            copy(fname, self.output_path)

    @property
    def input_fnames(self):
        return sorted(glob.glob(self.get_input_path("*.{}".format(self.extension))))

    def __len__(self):
        return len(self.input_fnames)

    def write_features(self):

        paths = self.input_fnames

        fnames_context = map(
            lambda x: os.path.join(
                self.output_path, x.replace("." + self.extension, ".h5context")
            ),
            map(os.path.basename, paths),
        )

        for name, target_fname in self._progress(
            zip(paths, fnames_context), total=len(self)
        ):
            wav, sr = read_audio(name)
            z, c = self.model(wav)
            feat = z if self.use_feat else c
            writer = H5Writer(target_fname)
            writer.write(feat)

    def __repr__(self):

        return "EmbeddingDatasetWriter ({n_files} files)\n\tinput:\t{input_root}\n\toutput:\t{output_root}\n\tsplit:\t{split})".format(
            n_files=len(self), **self.__dict__
        )


if __name__ == "__main__":

    args = EmbeddingWriterConfig().parse_args()

    for split in args.split:

        writer = EmbeddingDatasetWriter(
            input_root=args.input,
            output_root=args.output,
            split=split,
            model_fname=args.model,
            gpu=args.gpu,
            extension=args.ext,
            use_feat=args.use_feat,
        )

        print(writer)
        writer.require_output_path()

        print("Writing Features...")
        writer.write_features()
        print("Done.")

        if not args.no_copy_labels:
            print("Copying label data...")
            writer.copy_labels()
            print("Done.")