File size: 7,192 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.

from dataclasses import dataclass, field
import json
import logging
import os
import math
from typing import Optional
from fairseq.tasks import register_task
from fairseq.data import FairseqDataset, iterators

from tasks.ofa_task import OFATask, OFAConfig
from data.pretrain_data.unify_dataset import UnifyDataset
from data.file_dataset import FileDataset

logger = logging.getLogger(__name__)


@dataclass
class UnifyConfig(OFAConfig):
    max_image_size: int = field(
        default=512, metadata={"help": ""}
    )
    text_data: Optional[str] = field(
        default=None,
        metadata={"help": "pure text data"},
    )
    image_data: Optional[str] = field(
        default=None,
        metadata={"help": "pure image data"},
    )
    detection_data: Optional[str] = field(
        default=None,
        metadata={"help": "detection data"},
    )
    text_selected_cols: Optional[str] = field(
        default=None,
        metadata={"help": "pure text data selected cols"},
    )
    image_selected_cols: Optional[str] = field(
        default=None,
        metadata={"help": "pure image data selected cols"},
    )
    detection_selected_cols: Optional[str] = field(
        default=None,
        metadata={"help": "detection data selected cols"},
    )
    neg_sample_dir: Optional[str] = field(
        default=None,
        metadata={"help": "negative sample directory, which contains captions (taken from all image-text pairs), "
                          "answers (taken from VQA), "
                          "objects (taken form OpenImages) "},
    )
    code_image_size: int = field(
        default=128, metadata={"help": "the resolution of the generated image in the image infilling task"}
    )

    pretrain_seed: int = field(
        default=7,
        metadata={"help": "pretrain seed"},
    )

    mask_ratio: float = field(
        default=0.3,
        metadata={"help": "fraction of words/subwords that will be masked"},
    )
    random_ratio: float = field(
        default=0.0,
        metadata={"help": "instead of using [MASK], use random token this often"},
    )
    keep_ratio: float = field(
        default=0.0,
        metadata={"help": "instead of using [MASK], keep original token this often"},
    )
    mask_length: str = field(
        default="span-poisson",
        metadata={"help": "mask length to choose ['subword', 'word', 'span-poisson']"},
    )
    poisson_lambda: float = field(
        default=3.0,
        metadata={"help": "randomly shuffle sentences for this proportion of inputs"},
    )
    replace_length: int = field(
        default=1,
        metadata={"help": "when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)"},
    )


@register_task("unify_task", dataclass=UnifyConfig)
class UnifyTask(OFATask):
    def __init__(self, cfg: UnifyConfig, src_dict, tgt_dict):
        super().__init__(cfg, src_dict, tgt_dict)

        self.type2ans_dict = json.load(open(os.path.join(self.cfg.neg_sample_dir, 'type2ans.json')))
        self.ans2type_dict = {}
        for type, answer_list in self.type2ans_dict.items():
            if type == 'other':
                continue
            for answer in answer_list:
                self.ans2type_dict[answer] = type

        self.all_object_list = [
            row.strip() for row in open(os.path.join(self.cfg.neg_sample_dir, 'object.txt')) if row.strip() != ''
        ]
        self.all_caption_list = [
            row.strip() for row in open(os.path.join(self.cfg.neg_sample_dir, 'all_captions.txt')) if row.strip() != ''
        ]

        self.pure_text_dataset = None
        self.pure_image_dataset = None
        self.detection_dataset = None
        if self.cfg.text_data is not None:
            self.pure_text_dataset = FileDataset(self.cfg.text_data, self.cfg.text_selected_cols)
        if self.cfg.image_data is not None:
            self.pure_image_dataset = FileDataset(self.cfg.image_data, self.cfg.image_selected_cols)
        if self.cfg.detection_data is not None:
            self.detection_dataset = FileDataset(self.cfg.detection_data, self.cfg.detection_selected_cols)

    def load_dataset(self, split, epoch=1, combine=False, **kwargs):
        paths = self.cfg.data.split(',')
        assert len(paths) > 0

        file_path = paths[(epoch - 1) % (len(paths))]
        dataset = FileDataset(file_path, self.cfg.selected_cols)

        self.datasets[split] = UnifyDataset(
            split,
            dataset,
            self.bpe,
            self.src_dict,
            self.tgt_dict,
            max_src_length=self.cfg.max_src_length,
            max_tgt_length=self.cfg.max_tgt_length,
            seed=self.cfg.pretrain_seed,
            code_dict_size=self.cfg.code_dict_size,
            num_bins=self.cfg.num_bins,
            patch_image_size=self.cfg.patch_image_size,
            code_image_size=self.cfg.code_image_size,
            pure_text_dataset=self.pure_text_dataset,
            pure_image_dataset=self.pure_image_dataset,
            detection_dataset=self.detection_dataset,
            all_object_list=self.all_object_list,
            all_caption_list=self.all_caption_list,
            type2ans_dict=self.type2ans_dict,
            ans2type_dict=self.ans2type_dict,
            max_image_size=self.cfg.max_image_size,
            mask_ratio=self.cfg.mask_ratio,
            random_ratio=self.cfg.random_ratio,
            keep_ratio=self.cfg.keep_ratio,
            mask_length=self.cfg.mask_length,
            poisson_lambda=self.cfg.poisson_lambda,
            replace_length=self.cfg.replace_length
        )
   
    def get_batch_iterator(
        self,
        dataset,
        max_tokens=None,
        max_sentences=None,
        max_positions=None,
        ignore_invalid_inputs=False,
        required_batch_size_multiple=1,
        seed=1,
        num_shards=1,
        shard_id=0,
        num_workers=0,
        epoch=1,
        data_buffer_size=0,
        disable_iterator_cache=False,
    ):
        assert isinstance(dataset, FairseqDataset)

        # initialize the dataset with the correct starting epoch
        dataset.set_epoch(epoch)

        # create mini-batches with given size constraints
        batch_sampler = [
            [j for j in range(i, min(i + max_sentences, len(dataset)))]
            for i in range(0, len(dataset), max_sentences)
        ]
        total_row_count = dataset.dataset.get_total_row_count()
        num_batches = math.ceil(math.ceil(total_row_count / num_shards) / max_sentences)
        if len(batch_sampler) < num_batches:
            batch_sampler.append([1])

        # return a reusable, sharded iterator
        epoch_iter = iterators.EpochBatchIterator(
            dataset=dataset,
            collate_fn=dataset.collater,
            batch_sampler=batch_sampler,
            seed=seed,
            num_shards=1,
            shard_id=0,
            num_workers=num_workers,
            epoch=epoch,
            buffer_size=data_buffer_size
        )

        return epoch_iter