OFA-OCR / fairseq /examples /speech_to_text /prep_librispeech_data.py
JustinLin610's picture
first commit
ee21b96
raw
history blame
3.62 kB
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
from pathlib import Path
import shutil
from tempfile import NamedTemporaryFile
import pandas as pd
from examples.speech_to_text.data_utils import (
create_zip,
extract_fbank_features,
gen_config_yaml,
gen_vocab,
get_zip_manifest,
save_df_to_tsv,
)
from torchaudio.datasets import LIBRISPEECH
from tqdm import tqdm
log = logging.getLogger(__name__)
SPLITS = [
"train-clean-100",
"train-clean-360",
"train-other-500",
"dev-clean",
"dev-other",
"test-clean",
"test-other",
]
MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]
def process(args):
out_root = Path(args.output_root).absolute()
out_root.mkdir(exist_ok=True)
# Extract features
feature_root = out_root / "fbank80"
feature_root.mkdir(exist_ok=True)
for split in SPLITS:
print(f"Fetching split {split}...")
dataset = LIBRISPEECH(out_root.as_posix(), url=split, download=True)
print("Extracting log mel filter bank features...")
for wav, sample_rate, _, spk_id, chapter_no, utt_no in tqdm(dataset):
sample_id = f"{spk_id}-{chapter_no}-{utt_no}"
extract_fbank_features(
wav, sample_rate, feature_root / f"{sample_id}.npy"
)
# Pack features into ZIP
zip_path = out_root / "fbank80.zip"
print("ZIPing features...")
create_zip(feature_root, zip_path)
print("Fetching ZIP manifest...")
audio_paths, audio_lengths = get_zip_manifest(zip_path)
# Generate TSV manifest
print("Generating manifest...")
train_text = []
for split in SPLITS:
manifest = {c: [] for c in MANIFEST_COLUMNS}
dataset = LIBRISPEECH(out_root.as_posix(), url=split)
for _, _, utt, spk_id, chapter_no, utt_no in tqdm(dataset):
sample_id = f"{spk_id}-{chapter_no}-{utt_no}"
manifest["id"].append(sample_id)
manifest["audio"].append(audio_paths[sample_id])
manifest["n_frames"].append(audio_lengths[sample_id])
manifest["tgt_text"].append(utt.lower())
manifest["speaker"].append(spk_id)
save_df_to_tsv(
pd.DataFrame.from_dict(manifest), out_root / f"{split}.tsv"
)
if split.startswith("train"):
train_text.extend(manifest["tgt_text"])
# Generate vocab
vocab_size = "" if args.vocab_type == "char" else str(args.vocab_size)
spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size}"
with NamedTemporaryFile(mode="w") as f:
for t in train_text:
f.write(t + "\n")
gen_vocab(
Path(f.name),
out_root / spm_filename_prefix,
args.vocab_type,
args.vocab_size,
)
# Generate config YAML
gen_config_yaml(
out_root,
spm_filename=spm_filename_prefix + ".model",
specaugment_policy="ld"
)
# Clean up
shutil.rmtree(feature_root)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--output-root", "-o", required=True, type=str)
parser.add_argument(
"--vocab-type",
default="unigram",
required=True,
type=str,
choices=["bpe", "unigram", "char"],
),
parser.add_argument("--vocab-size", default=10000, type=int)
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()