Spaces:
Runtime error
Runtime error
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
import logging | |
import warnings | |
import torch | |
import numpy as np | |
from data import data_utils | |
from data.ofa_dataset import OFADataset | |
logger = logging.getLogger(__name__) | |
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) | |
def collate(samples, pad_idx, eos_idx): | |
if len(samples) == 0: | |
return {} | |
def merge(key): | |
return data_utils.collate_tokens( | |
[s[key] for s in samples], | |
pad_idx, | |
eos_idx=eos_idx, | |
) | |
src_tokens = merge("source") | |
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples]) | |
prev_output_tokens = None | |
target = None | |
if samples[0].get("target", None) is not None: | |
target = merge("target") | |
tgt_lengths = torch.LongTensor( | |
[s["target"].ne(pad_idx).long().sum() for s in samples] | |
) | |
ntokens = tgt_lengths.sum().item() | |
if samples[0].get("prev_output_tokens", None) is not None: | |
prev_output_tokens = merge("prev_output_tokens") | |
else: | |
ntokens = src_lengths.sum().item() | |
target_strs = np.array([s["target_str"] for s in samples]) | |
batch = { | |
"nsentences": len(samples), | |
"ntokens": ntokens, | |
"net_input": { | |
"src_tokens": src_tokens, | |
"src_lengths": src_lengths, | |
"prev_output_tokens": prev_output_tokens | |
}, | |
"target": target, | |
"target_strs": target_strs | |
} | |
return batch | |
class SummaryDataset(OFADataset): | |
def __init__( | |
self, | |
split, | |
dataset, | |
bpe, | |
src_dict, | |
tgt_dict=None, | |
code_dict_size=8192, | |
num_bins=1000, | |
max_src_length=512, | |
max_tgt_length=128, | |
noise_ratio=0.0 | |
): | |
super().__init__(split, dataset, bpe, src_dict, tgt_dict) | |
self.max_src_length = max_src_length | |
self.max_tgt_length = max_tgt_length | |
self.code_dict_size = code_dict_size | |
self.num_bins = num_bins | |
self.noise_ratio = noise_ratio | |
if type(bpe).__name__ == 'GPT2BPE': | |
self.prompt = ' what is the summary of article " {} "?' | |
elif type(bpe).__name__ == 'BertBPE': | |
self.prompt = "{} 请用一个句子简单总结上文:" | |
def __getitem__(self, index): | |
source, target = self.dataset[index] | |
target_str = target.lower() | |
source = self.pre_caption(source, max_words=self.max_src_length) | |
target = self.pre_caption(target, max_words=self.max_tgt_length) | |
source = source.replace('<unk>', 'unk') | |
target = target.replace('<unk>', 'unk') | |
src_item = self.encode_text( | |
self.prompt.format(source), | |
length=self.max_src_length | |
) | |
tgt_item = self.encode_text('{}'.format(target)) | |
noise_tgt_item = self.add_noise_to_tgt(tgt_item.clone(), self.noise_ratio) | |
src_item = torch.cat([self.bos_item, src_item, self.eos_item]) | |
target_item = torch.cat([tgt_item, self.eos_item]) | |
prev_output_item = torch.cat([self.bos_item, noise_tgt_item]) | |
example = { | |
"source": src_item, | |
"target": target_item, | |
"prev_output_tokens": prev_output_item, | |
"target_str": target_str | |
} | |
return example | |
def add_noise_to_tgt(self, target, p): | |
noise_indices = torch.FloatTensor(target.size(0)).uniform_() < p | |
target[noise_indices] = torch.randint( | |
4, len(self.src_dict) - self.code_dict_size - self.num_bins, size=(noise_indices.sum(),) | |
) | |
return target | |
def collater(self, samples, pad_to_length=None): | |
"""Merge a list of samples to form a mini-batch. | |
Args: | |
samples (List[dict]): samples to collate | |
Returns: | |
dict: a mini-batch containing the data of the task | |
""" | |
return collate(samples, pad_idx=self.pad, eos_idx=self.eos) |