Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import tempfile | |
import unittest | |
import math | |
import numpy as np | |
import tests.utils as test_utils | |
import torch | |
from fairseq import search | |
from fairseq.data.dictionary import Dictionary | |
from fairseq.models.transformer import TransformerModel | |
from fairseq.sequence_generator import EnsembleModel, SequenceGenerator | |
from fairseq.ngram_repeat_block import NGramRepeatBlock | |
from fairseq.tasks.fairseq_task import LegacyFairseqTask | |
DEFAULT_TEST_VOCAB_SIZE = 100 | |
class DummyTask(LegacyFairseqTask): | |
def __init__(self, args): | |
super().__init__(args) | |
self.dictionary = get_dummy_dictionary() | |
if getattr(self.args, "ctc", False): | |
self.dictionary.add_symbol("<ctc_blank>") | |
self.src_dict = self.dictionary | |
self.tgt_dict = self.dictionary | |
def source_dictionary(self): | |
return self.src_dict | |
def target_dictionary(self): | |
return self.dictionary | |
def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): | |
dummy_dict = Dictionary() | |
# add dummy symbol to satisfy vocab size | |
for id, _ in enumerate(range(vocab_size)): | |
dummy_dict.add_symbol("{}".format(id), n=1000) | |
return dummy_dict | |
def get_dummy_task_and_parser(): | |
""" | |
to build a fariseq model, we need some dummy parse and task. This function | |
is used to create dummy task and parser to faciliate model/criterion test | |
Note: we use FbSpeechRecognitionTask as the dummy task. You may want | |
to use other task by providing another function | |
""" | |
parser = argparse.ArgumentParser( | |
description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS | |
) | |
DummyTask.add_args(parser) | |
args = parser.parse_args([]) | |
task = DummyTask.setup_task(args) | |
return task, parser | |
class TestJitSequenceGeneratorBase(unittest.TestCase): | |
def setUp(self): | |
self.task, self.parser = get_dummy_task_and_parser() | |
eos = self.task.tgt_dict.eos() | |
src_tokens = torch.randint(3, 50, (2, 10)).long() | |
src_tokens = torch.cat((src_tokens, torch.LongTensor([[eos], [eos]])), -1) | |
src_lengths = torch.LongTensor([2, 10]) | |
self.sample = { | |
"net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths} | |
} | |
TransformerModel.add_args(self.parser) | |
args = self.parser.parse_args([]) | |
args.encoder_layers = 2 | |
args.decoder_layers = 1 | |
self.transformer_model = TransformerModel.build_model(args, self.task) | |
def assertOutputEqual(self, hypo, pos_probs): | |
pos_scores = torch.FloatTensor(pos_probs).log() | |
self.assertTensorSizeEqual(hypo["positional_scores"], pos_scores) | |
self.assertTensorSizeEqual(pos_scores.numel(), hypo["tokens"].numel()) | |
def assertTensorSizeEqual(self, t1, t2): | |
self.assertEqual(t1.size(), t2.size(), "size mismatch") | |
def assertAlmostEqual(self, t1, t2): | |
self.assertEqual(t1.size(), t2.size(), "size mismatch") | |
self.assertLess((t1 - t2).abs().max(), 1e-4) | |
def assertTensorEqual(self, t1, t2): | |
self.assertEqual(t1.size(), t2.size(), "size mismatch") | |
self.assertEqual(t1.ne(t2).long().sum(), 0) | |
def assertHypoEqual(self, h1, h2): | |
"Check two hypos are equal" | |
self.assertTensorEqual(h1["tokens"], h2["tokens"]) | |
self.assertAlmostEqual(h1["positional_scores"], h2["positional_scores"]) | |
self.assertLess(abs(h1["score"] - h2["score"]), 1e-6) | |
self.assertAlmostEqual(h1["attention"], h2["attention"]) | |
def _test_save_and_load(self, scripted_module): | |
with tempfile.NamedTemporaryFile() as f: | |
scripted_module.save(f.name) | |
torch.jit.load(f.name) | |
JIT_MSG = "Targeting OSS scriptability for the 1.6 release" | |
class TestJitSequenceGenerator(TestJitSequenceGeneratorBase): | |
def test_export_transformer(self): | |
model = self.transformer_model | |
torch.jit.script(model) | |
def test_ensemble_sequence_generator(self): | |
model = self.transformer_model | |
generator = SequenceGenerator( | |
[model], | |
self.task.tgt_dict, | |
beam_size=2, | |
no_repeat_ngram_size=2, | |
max_len_b=10, | |
) | |
scripted_model = torch.jit.script(generator) | |
self._test_save_and_load(scripted_model) | |
def test_export_ensemble_model(self): | |
model = self.transformer_model | |
ensemble_models = EnsembleModel([model]) | |
torch.jit.script(ensemble_models) | |
class TestExportSearch(unittest.TestCase): | |
def setUp(self): | |
task, _ = get_dummy_task_and_parser() | |
self.tgt_dict = task.tgt_dict | |
self.min_top1_prob = 0.4 | |
def test_export_diverse_bs(self): | |
search_strategy = search.DiverseBeamSearch( | |
self.tgt_dict, num_groups=2, diversity_strength=0.0 | |
) | |
torch.jit.script(search_strategy) | |
def test_export_sampling(self): | |
low_sampling_topp = self.min_top1_prob / 2.0 | |
search_strategy = search.Sampling( | |
self.tgt_dict, sampling_topp=low_sampling_topp | |
) | |
torch.jit.script(search_strategy) | |
def test_export_diverse_siblings_search(self): | |
search_strategy = search.DiverseSiblingsSearch( | |
self.tgt_dict, diversity_rate=0.5 | |
) | |
torch.jit.script(search_strategy) | |
class TestSequenceGeneratorBase(unittest.TestCase): | |
def assertHypoTokens(self, hypo, tokens): | |
self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens)) | |
def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0): | |
pos_scores = torch.FloatTensor(pos_probs).log() | |
self.assertAlmostEqual(hypo["positional_scores"], pos_scores) | |
self.assertEqual(pos_scores.numel(), hypo["tokens"].numel()) | |
score = pos_scores.sum() | |
if normalized: | |
score /= pos_scores.numel() ** lenpen | |
self.assertLess(abs(score - hypo["score"]), 1e-6) | |
def assertAlmostEqual(self, t1, t2): | |
self.assertEqual(t1.size(), t2.size(), "size mismatch") | |
self.assertLess((t1 - t2).abs().max(), 1e-4) | |
def assertTensorEqual(self, t1, t2): | |
self.assertEqual(t1.size(), t2.size(), "size mismatch") | |
self.assertEqual(t1.ne(t2).long().sum(), 0) | |
class TestSequenceGenerator(TestSequenceGeneratorBase): | |
def setUp(self): | |
( | |
self.tgt_dict, | |
self.w1, | |
self.w2, | |
src_tokens, | |
src_lengths, | |
self.model, | |
) = test_utils.sequence_generator_setup() | |
self.sample = { | |
"net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths} | |
} | |
def test_with_normalization(self): | |
generator = SequenceGenerator([self.model], self.tgt_dict, beam_size=2) | |
hypos = generator.forward(self.sample) | |
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w1, eos]) | |
self.assertHypoScore(hypos[0][0], [0.9, 1.0]) | |
# sentence 1, beam 2 | |
self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) | |
self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0]) | |
# sentence 2, beam 1 | |
self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos]) | |
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0]) | |
# sentence 2, beam 2 | |
self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) | |
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6]) | |
def test_without_normalization(self): | |
# Sentence 1: unchanged from the normalized case | |
# Sentence 2: beams swap order | |
generator = SequenceGenerator( | |
[self.model], self.tgt_dict, beam_size=2, normalize_scores=False | |
) | |
hypos = generator.forward(self.sample) | |
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w1, eos]) | |
self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False) | |
# sentence 1, beam 2 | |
self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) | |
self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False) | |
# sentence 2, beam 1 | |
self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) | |
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False) | |
# sentence 2, beam 2 | |
self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos]) | |
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False) | |
def test_with_lenpen_favoring_short_hypos(self): | |
lenpen = 0.6 | |
generator = SequenceGenerator( | |
[self.model], self.tgt_dict, beam_size=2, len_penalty=lenpen | |
) | |
hypos = generator.forward(self.sample) | |
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w1, eos]) | |
self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen) | |
# sentence 1, beam 2 | |
self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) | |
self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen) | |
# sentence 2, beam 1 | |
self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) | |
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen) | |
# sentence 2, beam 2 | |
self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos]) | |
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen) | |
def test_with_lenpen_favoring_long_hypos(self): | |
lenpen = 5.0 | |
generator = SequenceGenerator( | |
[self.model], self.tgt_dict, beam_size=2, len_penalty=lenpen | |
) | |
hypos = generator.forward(self.sample) | |
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos]) | |
self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen) | |
# sentence 1, beam 2 | |
self.assertHypoTokens(hypos[0][1], [w1, eos]) | |
self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen) | |
# sentence 2, beam 1 | |
self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos]) | |
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen) | |
# sentence 2, beam 2 | |
self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) | |
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen) | |
def test_maxlen(self): | |
generator = SequenceGenerator( | |
[self.model], self.tgt_dict, beam_size=2, max_len_b=2 | |
) | |
hypos = generator.forward(self.sample) | |
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w1, eos]) | |
self.assertHypoScore(hypos[0][0], [0.9, 1.0]) | |
# sentence 1, beam 2 | |
self.assertHypoTokens(hypos[0][1], [w2, w2, eos]) | |
self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6]) | |
# sentence 2, beam 1 | |
self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) | |
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6]) | |
# sentence 2, beam 2 | |
self.assertHypoTokens(hypos[1][1], [w2, w2, eos]) | |
self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01]) | |
def test_encoder_with_different_output_len(self): | |
args = self.model.encoder.args | |
task = test_utils.TestTranslationTask.setup_task( | |
args, self.tgt_dict, self.tgt_dict | |
) | |
reshaping_model = test_utils.TestReshapingModel.build_model(args, task) | |
generator = SequenceGenerator( | |
[reshaping_model], self.tgt_dict, beam_size=2, max_len_b=2 | |
) | |
hypos = generator.forward(self.sample) | |
for sent in [0, 1]: | |
for beam in [0, 1]: | |
assert hypos[sent][beam]["attention"] is not None | |
def test_generation_with_additional_input(self): | |
args = self.model.encoder.args | |
task = test_utils.TestTranslationTask.setup_task( | |
args, self.tgt_dict, self.tgt_dict | |
) | |
add_input_model = test_utils.TestAdditionalInputModel.build_model(args, task) | |
generator = SequenceGenerator([add_input_model], self.tgt_dict, beam_size=2) | |
sample = self.sample.copy() | |
sample["net_input"]["fancy_other_input"] = sample["net_input"]["src_tokens"] | |
hypos = generator.forward(self.sample) | |
eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w1, eos]) | |
self.assertHypoScore(hypos[0][0], [0.9, 1.0]) | |
class TestRepeatNgramBlocking(TestSequenceGeneratorBase): | |
def setUpClass(cls): | |
( | |
cls.tgt_dict, | |
cls.w1, | |
cls.w2, | |
src_tokens, | |
src_lengths, | |
cls.model, | |
) = test_utils.sequence_generator_setup() | |
return cls | |
def test_finds_repetitive_tokens(self): | |
bsz, vocab_size, beam_size, step = 2, 4, 1, 3 | |
generated_tok = torch.tensor( | |
[[2, 2, 2, 2], [3, 3, 3, 3]], dtype=torch.long, device="cuda" | |
) | |
lprobs = torch.zeros((beam_size * bsz, vocab_size), device="cuda") | |
desired_result = lprobs.new_tensor( | |
[[0.0, 0.0, -math.inf, 0.0], [0.0, 0.0, 0.0, -math.inf]] | |
) | |
cuda_ext_result, baseline_result = self._compare_cuda_ext_to_default_implem( | |
bsz, beam_size, generated_tok, lprobs, step, 2 | |
) | |
self.assertTensorEqual(cuda_ext_result, desired_result) | |
self.assertTensorEqual(baseline_result, desired_result) | |
def test_jit_no_extension(self): | |
bsz, vocab_size, beam_size, step = 2, 4, 1, 3 | |
generated_tok = torch.tensor( | |
[[2, 2, 2, 2], [3, 3, 3, 3]], dtype=torch.long, device="cuda" | |
) | |
lprobs = torch.zeros((beam_size * bsz, vocab_size), device="cuda") | |
blocker = NGramRepeatBlock(2, use_extension=False) | |
base_result = blocker(generated_tok, lprobs.clone(), bsz, beam_size, step) | |
scripted_blocker = torch.jit.script(blocker) | |
jit_result = scripted_blocker( | |
generated_tok, lprobs.clone(), bsz, beam_size, step | |
) | |
self.assertTensorEqual(base_result, jit_result) | |
def test_ngram_blocking_same_as_default_implem(self): | |
"""Test that cuda extension returns same things as default impl in many settings.""" | |
vocab_size = 4 | |
step = 6 | |
for _ in range(2): | |
block_param = np.random.choice([1, 2, 3, 4]) | |
batch_size = np.random.randint(1, 8) | |
beam_size = np.random.choice([1, 2, 4, 8]) | |
lprobs = torch.zeros((beam_size * batch_size, vocab_size), device="cuda") | |
generated_tok = torch.tensor( | |
np.random.randint( | |
0, vocab_size, size=(batch_size * beam_size, step + 1) | |
), | |
device="cuda", | |
dtype=torch.long, | |
) | |
self._compare_cuda_ext_to_default_implem( | |
batch_size, | |
beam_size, | |
generated_tok, | |
lprobs, | |
step, | |
block_param, | |
) | |
def _compare_cuda_ext_to_default_implem( | |
self, bsz, beam_size, generated_tok, lprobs, step, block_param | |
): | |
"""Assert that cuda extension and default implem return the same thing.""" | |
blocker = NGramRepeatBlock(block_param) | |
assert blocker.use_extension, "Extension not compiled" | |
cuda_ext_result = blocker( | |
generated_tok, | |
lprobs.clone(), | |
bsz, | |
beam_size, | |
step, | |
) | |
blocker.use_extension = False | |
baseline_result = blocker( | |
generated_tok, | |
lprobs.clone(), | |
bsz, | |
beam_size, | |
step, | |
) | |
self.assertTensorEqual(cuda_ext_result, baseline_result) | |
blocker.use_extension = True | |
return cuda_ext_result, baseline_result | |
class TestDiverseBeamSearch(TestSequenceGeneratorBase): | |
def setUp(self): | |
# construct dummy dictionary | |
d = test_utils.dummy_dictionary(vocab_size=2) | |
self.assertEqual(d.pad(), 1) | |
self.assertEqual(d.eos(), 2) | |
self.assertEqual(d.unk(), 3) | |
self.eos = d.eos() | |
self.w1 = 4 | |
self.w2 = 5 | |
# construct source data | |
self.src_tokens = torch.LongTensor( | |
[ | |
[self.w1, self.w2, self.eos], | |
[self.w1, self.w2, self.eos], | |
] | |
) | |
self.src_lengths = torch.LongTensor([2, 2]) | |
args = argparse.Namespace() | |
unk = 0.0 | |
args.beam_probs = [ | |
# step 0: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 | |
# sentence 1: | |
[0.0, unk, 0.9, 0.1], # beam 1 | |
[0.0, unk, 0.9, 0.1], # beam 2 | |
# sentence 2: | |
[0.0, unk, 0.7, 0.3], | |
[0.0, unk, 0.7, 0.3], | |
] | |
), | |
# step 1: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 | |
# sentence 1: | |
[0.0, unk, 0.6, 0.4], | |
[0.0, unk, 0.6, 0.4], | |
# sentence 2: | |
[0.25, unk, 0.35, 0.4], | |
[0.25, unk, 0.35, 0.4], | |
] | |
), | |
# step 2: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 | |
# sentence 1: | |
[1.0, unk, 0.0, 0.0], | |
[1.0, unk, 0.0, 0.0], | |
# sentence 2: | |
[0.9, unk, 0.1, 0.0], | |
[0.9, unk, 0.1, 0.0], | |
] | |
), | |
] | |
task = test_utils.TestTranslationTask.setup_task(args, d, d) | |
self.model = task.build_model(args) | |
self.tgt_dict = task.target_dictionary | |
def test_diverse_beam_search(self): | |
search_strategy = search.DiverseBeamSearch( | |
self.tgt_dict, num_groups=2, diversity_strength=0.0 | |
) | |
generator = SequenceGenerator( | |
[self.model], | |
self.tgt_dict, | |
beam_size=2, | |
search_strategy=search_strategy, | |
) | |
sample = { | |
"net_input": { | |
"src_tokens": self.src_tokens, | |
"src_lengths": self.src_lengths, | |
} | |
} | |
hypos = generator.forward(sample) | |
eos, w1, w2 = self.eos, self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) | |
self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0]) | |
# sentence 1, beam 2 | |
self.assertHypoTokens(hypos[0][1], [w1, w1, eos]) | |
self.assertHypoScore(hypos[0][1], [0.9, 0.6, 1.0]) | |
# sentence 2, beam 1 | |
self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) | |
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9]) | |
# sentence 2, beam 2 | |
self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) | |
self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.9]) | |
class TestDiverseSiblingsSearch(TestDiverseBeamSearch): | |
def assertHypoScore( | |
self, hypo, pos_probs, sibling_rank, diversity_rate, normalized=True, lenpen=1.0 | |
): | |
pos_scores = torch.FloatTensor(pos_probs).log() | |
pos_scores.sub_(torch.Tensor(sibling_rank) * diversity_rate) | |
self.assertAlmostEqual(hypo["positional_scores"], pos_scores) | |
self.assertEqual(pos_scores.numel(), hypo["tokens"].numel()) | |
score = pos_scores.sum() | |
if normalized: | |
score /= pos_scores.numel() ** lenpen | |
self.assertLess(abs(score - hypo["score"]), 1e-6) | |
def test_diverse_beam_search(self): | |
search_strategy = search.DiverseSiblingsSearch( | |
self.tgt_dict, diversity_rate=0.5 | |
) | |
generator = SequenceGenerator( | |
[self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy | |
) | |
sample = { | |
"net_input": { | |
"src_tokens": self.src_tokens, | |
"src_lengths": self.src_lengths, | |
} | |
} | |
hypos = generator.forward(sample) | |
eos, w1, w2 = self.eos, self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) | |
self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0], [0, 1, 1], 0.5) | |
# sentence 1, beam 2 | |
self.assertHypoTokens(hypos[0][1], [w1, w2, eos]) | |
self.assertHypoScore(hypos[0][1], [0.9, 0.4, 1.0], [0, 2, 1], 0.5) | |
# sentence 2, beam 1 | |
self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) | |
self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9], [0, 1, 1], 0.5) | |
# sentence 2, beam 2 | |
self.assertHypoTokens(hypos[1][1], [w1, w1, eos]) | |
self.assertHypoScore(hypos[1][1], [0.7, 0.35, 0.9], [0, 2, 1], 0.5) | |
class TestPrefixBeamSearch(TestSequenceGeneratorBase): | |
def setUp(self): | |
# construct dummy dictionary | |
vocab_size = 10 | |
d = test_utils.dummy_dictionary(vocab_size=vocab_size) | |
self.assertEqual(d.pad(), 1) | |
self.assertEqual(d.eos(), 2) | |
self.assertEqual(d.unk(), 3) | |
self.eos = d.eos() | |
self.w1 = 4 | |
self.w2 = 5 | |
self.beam_size = 3 | |
# construct prefix data | |
self.tokens = torch.LongTensor( | |
[ | |
[self.w1, self.w2, self.eos], | |
] | |
) | |
self.token_lengths = torch.LongTensor([2]) | |
args = argparse.Namespace() | |
unk = 0.0 | |
args.beam_probs = [ | |
# prefix step 0: | |
torch.FloatTensor( | |
[ | |
# eos | |
[0.0, unk] + [1.0 / vocab_size] * vocab_size # beam 1 | |
] * self.beam_size | |
), | |
] * vocab_size | |
task = test_utils.TestTranslationTask.setup_task(args, d, d) | |
self.model = task.build_model(args) | |
self.tgt_dict = task.target_dictionary | |
def test_prefix_beam_search(self): | |
search_strategy = search.BeamSearch(self.tgt_dict) | |
generator = SequenceGenerator( | |
[self.model], | |
self.tgt_dict, | |
beam_size=self.beam_size, | |
search_strategy=search_strategy, | |
) | |
sample = { | |
"net_input": { | |
"src_tokens": self.tokens, | |
"src_lengths": self.token_lengths, | |
} | |
} | |
# make sure test sample doesn't break any assertion | |
generator.forward(sample, prefix_tokens=self.tokens[:, :-1]) | |
class TestTopPSamplingSearch(TestSequenceGeneratorBase): | |
def setUp(self): | |
# construct dummy dictionary | |
d = test_utils.dummy_dictionary(vocab_size=2) | |
self.assertEqual(d.pad(), 1) | |
self.assertEqual(d.eos(), 2) | |
self.assertEqual(d.unk(), 3) | |
self.eos = d.eos() | |
self.w1 = 4 | |
self.w2 = 5 | |
# construct source data | |
self.src_tokens = torch.LongTensor( | |
[ | |
[self.w1, self.w2, self.eos], | |
[self.w1, self.w2, self.eos], | |
] | |
) | |
self.src_lengths = torch.LongTensor([2, 2]) | |
args = argparse.Namespace() | |
unk = 0.0 | |
# The minimal probability of top 2 tokens. | |
self.min_top2_prob = 0.75 | |
# The minimal probability of the top 1 token. | |
self.min_top1_prob = 0.4 | |
w1_prob = self.min_top1_prob | |
w2_prob = self.min_top2_prob - self.min_top1_prob | |
eos_prob = 1 - self.min_top2_prob | |
args.beam_probs = [ | |
# step 0: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 | |
[0.0, unk, 1.0, 0.0], | |
[0.0, unk, 1.0, 0.0], | |
[0.0, unk, 1.0, 0.0], | |
[0.0, unk, 1.0, 0.0], | |
] | |
), | |
# step 1: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 | |
[eos_prob, unk, w1_prob, w2_prob], | |
[eos_prob, unk, w1_prob, w2_prob], | |
[eos_prob, unk, w1_prob, w2_prob], | |
[eos_prob, unk, w1_prob, w2_prob], | |
] | |
), | |
# step 2: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 | |
[1.0, unk, 0.0, 0.0], | |
[1.0, unk, 0.0, 0.0], | |
[1.0, unk, 0.0, 0.0], | |
[1.0, unk, 0.0, 0.0], | |
] | |
), | |
] | |
task = test_utils.TestTranslationTask.setup_task(args, d, d) | |
self.model = task.build_model(args) | |
self.tgt_dict = task.target_dictionary | |
def test_topp_sampling_search_low_prob(self): | |
# Given a prob low enough to top-P sampling, we expect only the top | |
# 1 token to be sampled, which always results in the same output. | |
low_sampling_topp = self.min_top1_prob / 2.0 | |
search_strategy = search.Sampling( | |
self.tgt_dict, sampling_topp=low_sampling_topp | |
) | |
generator = SequenceGenerator( | |
[self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy | |
) | |
sample = { | |
"net_input": { | |
"src_tokens": self.src_tokens, | |
"src_lengths": self.src_lengths, | |
} | |
} | |
hypos = generator.forward(sample) | |
eos, w1 = self.eos, self.w1 | |
# sentence 1, beam 1 | |
self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) | |
self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0]) | |
# sentence 1, beam 2 | |
self.assertHypoTokens(hypos[0][1], [w1, w1, eos]) | |
self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0]) | |
# sentence 2, beam 1 | |
self.assertHypoTokens(hypos[1][0], [w1, w1, eos]) | |
self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0]) | |
# sentence 2, beam 2 | |
self.assertHypoTokens(hypos[1][1], [w1, w1, eos]) | |
self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0]) | |
def test_topp_sampling_search_high_prob(self): | |
# Given a prob high enough to top-P sampling, any of the top 2 | |
# tokens could be sampled. This can cause different outputs. | |
high_sampling_topp = (self.min_top1_prob + self.min_top2_prob) / 2.0 | |
search_strategy = search.Sampling( | |
self.tgt_dict, sampling_topp=high_sampling_topp | |
) | |
generator = SequenceGenerator( | |
[self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy | |
) | |
sample = { | |
"net_input": { | |
"src_tokens": self.src_tokens, | |
"src_lengths": self.src_lengths, | |
} | |
} | |
hypos = generator.forward(sample) | |
eos, w1, w2 = self.eos, self.w1, self.w2 | |
# sentence 1, beam 1 | |
self.assertTrue( | |
self.hypoTokens(hypos[0][0], [w1, w1, eos]) | |
or self.hypoTokens(hypos[0][0], [w1, w2, eos]) | |
) | |
self.assertTrue( | |
self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0]) | |
or self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0]) | |
) | |
# sentence 1, beam 2 | |
self.assertTrue( | |
self.hypoTokens(hypos[0][1], [w1, w1, eos]) | |
or self.hypoTokens(hypos[0][1], [w1, w2, eos]) | |
) | |
self.assertTrue( | |
self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0]) | |
or self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0]) | |
) | |
# sentence 2, beam 1 | |
self.assertTrue( | |
self.hypoTokens(hypos[1][0], [w1, w1, eos]) | |
or self.hypoTokens(hypos[1][0], [w1, w2, eos]) | |
) | |
self.assertTrue( | |
self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0]) | |
or self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0]) | |
) | |
# sentence 2, beam 2 | |
self.assertTrue( | |
self.hypoTokens(hypos[1][1], [w1, w1, eos]) | |
or self.hypoTokens(hypos[1][1], [w1, w2, eos]) | |
) | |
self.assertTrue( | |
self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0]) | |
or self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0]) | |
) | |
def hypoTokens(self, hypo, tokens): | |
return self.tensorEqual(hypo["tokens"], torch.LongTensor(tokens)) | |
def hypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0): | |
pos_scores = torch.FloatTensor(pos_probs).log() | |
if not self.almostEqual(hypo["positional_scores"], pos_scores): | |
return False | |
if pos_scores.numel() != hypo["tokens"].numel(): | |
return False | |
score = pos_scores.sum() | |
if normalized: | |
score /= pos_scores.numel() ** lenpen | |
return abs(score - hypo["score"]) < 1e-6 | |
def almostEqual(self, t1, t2): | |
return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4 | |
def tensorEqual(self, t1, t2): | |
return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0 | |
if __name__ == "__main__": | |
unittest.main() | |