Spaces:
Runtime error
Runtime error
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
from io import BytesIO | |
import logging | |
import warnings | |
import numpy as np | |
import torch | |
import base64 | |
from torchvision import transforms | |
from PIL import Image, ImageFile | |
from data import data_utils | |
from data.ofa_dataset import OFADataset | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
ImageFile.MAX_IMAGE_PIXELS = None | |
Image.MAX_IMAGE_PIXELS = None | |
logger = logging.getLogger(__name__) | |
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
def collate(samples, pad_idx, eos_idx): | |
if len(samples) == 0: | |
return {} | |
def merge(key): | |
return data_utils.collate_tokens( | |
[s[key] for s in samples], | |
pad_idx, | |
eos_idx=eos_idx, | |
) | |
id = np.array([s["id"] for s in samples]) | |
src_tokens = merge("source") | |
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples]) | |
patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0) | |
patch_masks = torch.cat([sample['patch_mask'] for sample in samples]) | |
conf = None | |
if samples[0].get("conf", None) is not None: | |
conf = torch.cat([s['conf'] for s in samples], dim=0) | |
ref_dict = None | |
if samples[0].get("ref_dict", None) is not None: | |
ref_dict = np.array([s['ref_dict'] for s in samples]) | |
constraint_masks = None | |
if samples[0].get("constraint_mask", None) is not None: | |
constraint_masks = merge("constraint_mask") | |
decoder_prompts = None | |
if samples[0].get("decoder_prompt", None) is not None: | |
decoder_prompts = np.array([s['decoder_prompt'].tolist() for s in samples]) | |
prefix_tokens = None | |
if samples[0].get("decoder_prompt", None) is not None: | |
prefix_tokens = merge("decoder_prompt") | |
prefix_tokens = prefix_tokens[:, 1:] | |
prev_output_tokens = None | |
target = None | |
if samples[0].get("target", None) is not None: | |
target = merge("target") | |
tgt_lengths = torch.LongTensor( | |
[s["target"].ne(pad_idx).long().sum() for s in samples] | |
) | |
ntokens = tgt_lengths.sum().item() | |
if samples[0].get("prev_output_tokens", None) is not None: | |
prev_output_tokens = merge("prev_output_tokens") | |
else: | |
ntokens = src_lengths.sum().item() | |
batch = { | |
"id": id, | |
"nsentences": len(samples), | |
"ntokens": ntokens, | |
"net_input": { | |
"src_tokens": src_tokens, | |
"src_lengths": src_lengths, | |
"patch_images": patch_images, | |
"patch_masks": patch_masks, | |
"prev_output_tokens": prev_output_tokens | |
}, | |
"conf": conf, | |
"ref_dict": ref_dict, | |
"constraint_masks": constraint_masks, | |
"decoder_prompts": decoder_prompts, | |
"target": target, | |
"prefix_tokens": prefix_tokens | |
} | |
return batch | |
class VqaGenDataset(OFADataset): | |
def __init__( | |
self, | |
split, | |
dataset, | |
bpe, | |
src_dict, | |
tgt_dict=None, | |
max_src_length=128, | |
max_object_length=30, | |
max_tgt_length=30, | |
patch_image_size=224, | |
add_object=False, | |
constraint_trie=None, | |
imagenet_default_mean_and_std=False, | |
prompt_type="none" | |
): | |
super().__init__(split, dataset, bpe, src_dict, tgt_dict) | |
self.max_src_length = max_src_length | |
self.max_object_length = max_object_length | |
self.max_tgt_length = max_tgt_length | |
self.patch_image_size = patch_image_size | |
self.add_object = add_object | |
self.constraint_trie = constraint_trie | |
self.prompt_type = prompt_type | |
if imagenet_default_mean_and_std: | |
mean = IMAGENET_DEFAULT_MEAN | |
std = IMAGENET_DEFAULT_STD | |
else: | |
mean = [0.5, 0.5, 0.5] | |
std = [0.5, 0.5, 0.5] | |
self.patch_resize_transform = transforms.Compose([ | |
lambda image: image.convert("RGB"), | |
transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std), | |
]) | |
def __getitem__(self, index): | |
item = self.dataset[index] | |
if len(item) == 5: | |
uniq_id, image, question, ref, predict_objects = item | |
else: | |
uniq_id, image, question, ref, predict_objects, caption = item | |
image = Image.open(BytesIO(base64.urlsafe_b64decode(image))) | |
patch_image = self.patch_resize_transform(image) | |
patch_mask = torch.tensor([True]) | |
question = self.pre_question(question, self.max_src_length) | |
question = question + '?' if not question.endswith('?') else question | |
src_item = self.encode_text(' {}'.format(question)) | |
ref_dict = {item.split('|!+')[1]: float(item.split('|!+')[0]) for item in ref.split('&&')} | |
answer = max(ref_dict, key=ref_dict.get) | |
conf = torch.tensor([ref_dict[answer]]) | |
tgt_item = self.encode_text(" {}".format(answer)) | |
if self.add_object and predict_objects is not None: | |
predict_object_seq = ' '.join(predict_objects.strip().split('&&')[:self.max_object_length]) | |
predict_object_item = self.encode_text(" object: {}".format(predict_object_seq)) | |
src_item = torch.cat([src_item, predict_object_item]) | |
src_item = torch.cat([self.bos_item, src_item, self.eos_item]) | |
if self.prompt_type == 'none': | |
prev_output_item = torch.cat([self.bos_item, tgt_item]) | |
target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |
decoder_prompt = self.bos_item | |
elif self.prompt_type == 'src': | |
prev_output_item = torch.cat([src_item, tgt_item]) | |
target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |
decoder_prompt = src_item | |
elif self.prompt_type == 'prev_output': | |
prev_output_item = torch.cat([src_item[:-1], tgt_item]) | |
target_item = torch.cat([prev_output_item[1:], self.eos_item]) | |
decoder_prompt = src_item[:-1] | |
else: | |
raise NotImplementedError | |
target_item[:-len(tgt_item)-1] = self.tgt_dict.pad() | |
example = { | |
"id": uniq_id, | |
"source": src_item, | |
"patch_image": patch_image, | |
"patch_mask": patch_mask, | |
"target": target_item, | |
"prev_output_tokens": prev_output_item, | |
"decoder_prompt": decoder_prompt, | |
"ref_dict": ref_dict, | |
"conf": conf, | |
} | |
if self.constraint_trie is not None: | |
constraint_mask = torch.zeros((len(target_item), len(self.tgt_dict))).bool() | |
start_idx = len(target_item) - len(tgt_item) - 1 | |
for i in range(len(target_item)-len(tgt_item)-1, len(target_item)): | |
constraint_prefix_token = [self.tgt_dict.bos()] + target_item[start_idx:i].tolist() | |
constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token) | |
constraint_mask[i][constraint_nodes] = True | |
example["constraint_mask"] = constraint_mask | |
return example | |
def collater(self, samples, pad_to_length=None): | |
"""Merge a list of samples to form a mini-batch. | |
Args: | |
samples (List[dict]): samples to collate | |
Returns: | |
dict: a mini-batch containing the data of the task | |
""" | |
return collate(samples, pad_idx=self.pad, eos_idx=self.eos) | |