Spaces:
Runtime error
Runtime error
# Guide: | |
# This script supports distributed training on multi-gpu workers (as well as single-worker training). | |
# Please set the options below according to the comments. | |
# For multi-gpu workers training, these options should be manually set for each worker. | |
# After setting the options, please run the script on each worker. | |
# To use the shuffled data (if exists), please uncomment the Line 24. | |
# Number of GPUs per GPU worker | |
GPUS_PER_NODE=8 | |
# Number of GPU workers, for single-worker training, please set to 1 | |
WORKER_CNT=4 | |
# The ip address of the rank-0 worker, for single-worker training, please set to localhost | |
export MASTER_ADDR=XX.XX.XX.XX | |
# The port for communication | |
export MASTER_PORT=8314 | |
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0 | |
export RANK=0 | |
data_dir=../../dataset/vqa_data | |
data=${data_dir}/vqa_train.tsv,${data_dir}/vqa_val.tsv | |
# Note: If you have shuffled the data in advance, please uncomment the line below. | |
# data=${data_dir}/vqa_train_1.tsv,${data_dir}/vqa_train_2.tsv,${data_dir}/vqa_train_3.tsv,${data_dir}/vqa_train_4.tsv,${data_dir}/vqa_train_5.tsv,${data_dir}/vqa_train_6.tsv,${data_dir}/vqa_train_7.tsv,${data_dir}/vqa_train_8.tsv,${data_dir}/vqa_train_9.tsv,${data_dir}/vqa_train_10.tsv,${data_dir}/vqa_val.tsv | |
ans2label_file=../../dataset/vqa_data/trainval_ans2label.pkl | |
restore_file=../../checkpoints/ofa_base.pt | |
selected_cols=0,5,2,3,4 | |
log_dir=./vqa_logs | |
save_dir=./vqa_checkpoints | |
mkdir -p $log_dir $save_dir | |
bpe_dir=../../utils/BPE | |
user_dir=../../ofa_module | |
task=vqa_gen | |
arch=ofa_base | |
criterion=adjust_label_smoothed_cross_entropy | |
label_smoothing=0.1 | |
batch_size=4 | |
update_freq=4 | |
resnet_drop_path_rate=0.0 | |
encoder_drop_path_rate=0.1 | |
decoder_drop_path_rate=0.1 | |
dropout=0.1 | |
attention_dropout=0.0 | |
max_src_length=80 | |
max_object_length=30 | |
max_tgt_length=30 | |
num_bins=1000 | |
uses_ema="--uses-ema" | |
store_ema="--store-ema" | |
ema_fp32="--ema-fp32" | |
ema_decay=0.9999 | |
ema_start_update=0 | |
# Specify the inference type in validation after each fine-tuning epoch | |
# As mentioned in the readme, you can choose from allcand or beamsearch evaluation, default to allcand | |
val_inference_type=allcand | |
# Specify whether to activate unconstrained VQA finetuning, which does not use a pre-defined candidate answer set | |
# If --unconstrained-training is acitvated, --ans2label-file will **not be used even if it is specified** | |
# Meanwhile, --val-inference-type must be set to **beamsearch** | |
# By default, we follow the constrained finetuning as we mentioned in OFA paper, the candidate answer set shall be specified by --ans2label-file | |
# For more details about this option, please refer to issue #123 and PR #124 | |
unconstrained_training_flag="" | |
# unconstrained_training_flag="--unconstrained-training" | |
for max_epoch in {15,}; do | |
echo "max_epoch "${max_epoch} | |
for warmup_ratio in {0.04,}; do | |
echo "warmup_updates "${warmup_updates} | |
for lr in {5e-5,}; do | |
echo "lr "${lr} | |
for patch_image_size in {480,}; do | |
echo "patch_image_size "${patch_image_size} | |
log_file=${log_dir}/${max_epoch}"_"${warmup_ratio}"_"${lr}"_"${patch_image_size}"_rank"${RANK}".log" | |
save_path=${save_dir}/${max_epoch}"_"${warmup_ratio}"_"${lr}"_"${patch_image_size} | |
mkdir -p $save_path | |
python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --nnodes=${WORKER_CNT} --node_rank=${RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} ../../train.py \ | |
${data} \ | |
--selected-cols=${selected_cols} \ | |
--bpe-dir=${bpe_dir} \ | |
--user-dir=${user_dir} \ | |
--restore-file=${restore_file} \ | |
--reset-optimizer --reset-dataloader --reset-meters \ | |
--save-dir=${save_path} \ | |
--task=${task} \ | |
--arch=${arch} \ | |
--criterion=${criterion} \ | |
--label-smoothing=${label_smoothing} \ | |
--batch-size=${batch_size} \ | |
--update-freq=${update_freq} \ | |
--encoder-normalize-before \ | |
--decoder-normalize-before \ | |
--share-decoder-input-output-embed \ | |
--share-all-embeddings \ | |
--layernorm-embedding \ | |
--patch-layernorm-embedding \ | |
--code-layernorm-embedding \ | |
--resnet-drop-path-rate=${resnet_drop_path_rate} \ | |
--encoder-drop-path-rate=${encoder_drop_path_rate} \ | |
--decoder-drop-path-rate=${decoder_drop_path_rate} \ | |
--dropout=${dropout} \ | |
--attention-dropout=${attention_dropout} \ | |
--weight-decay=0.01 \ | |
--optimizer=adam \ | |
--adam-betas="(0.9,0.999)" \ | |
--adam-eps=1e-08 \ | |
--clip-norm=1.0 \ | |
--lr-scheduler=polynomial_decay \ | |
--lr=${lr} \ | |
--max-epoch=${max_epoch} \ | |
--warmup-ratio=${warmup_ratio} \ | |
--log-format=simple \ | |
--log-interval=10 \ | |
--fixed-validation-seed=7 \ | |
--keep-last-epochs=15 \ | |
--save-interval=1 --validate-interval=1 \ | |
--best-checkpoint-metric=vqa_score --maximize-best-checkpoint-metric \ | |
--max-src-length=${max_src_length} \ | |
--max-object-length=${max_object_length} \ | |
--max-tgt-length=${max_tgt_length} \ | |
--find-unused-parameters \ | |
--freeze-encoder-embedding \ | |
--freeze-decoder-embedding \ | |
${unconstrained_training_flag} \ | |
--ans2label-file=${ans2label_file} \ | |
--valid-batch-size=20 \ | |
--add-type-embedding \ | |
--scale-attn \ | |
--scale-fc \ | |
--scale-heads \ | |
--disable-entangle \ | |
--num-bins=${num_bins} \ | |
--patch-image-size=${patch_image_size} \ | |
--prompt-type=prev_output \ | |
--fp16 \ | |
--fp16-scale-window=512 \ | |
--add-object \ | |
${uses_ema} \ | |
${store_ema} \ | |
${ema_fp32} \ | |
--ema-decay=${ema_decay} \ | |
--ema-start-update=${ema_start_update} \ | |
--val-inference-type=${val_inference_type} \ | |
--num-workers=0 > ${log_file} 2>&1 | |
done | |
done | |
done | |
done | |