Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import contextlib | |
import logging | |
import json | |
import os | |
import tempfile | |
import unittest | |
from io import StringIO | |
import torch | |
from fairseq import options | |
from fairseq_cli import train | |
from tests.utils import ( | |
create_dummy_data, | |
generate_main, | |
preprocess_lm_data, | |
preprocess_translation_data, | |
train_translation_model, | |
) | |
class TestTranslationGPU(unittest.TestCase): | |
def setUp(self): | |
logging.disable(logging.CRITICAL) | |
def tearDown(self): | |
logging.disable(logging.NOTSET) | |
def test_fp16_multigpu(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_fp16") as data_dir: | |
log = os.path.join(data_dir, "train.log") | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir) | |
train_translation_model( | |
data_dir, | |
"fconv_iwslt_de_en", | |
["--fp16", "--log-file", log], | |
world_size=min(torch.cuda.device_count(), 2), | |
) | |
generate_main(data_dir) | |
assert os.path.exists(log) | |
def parse_logs(logfile): | |
logs = [] | |
for ln in open(logfile, "r").readlines(): | |
try: | |
logs.append(json.loads(ln)) | |
except json.JSONDecodeError: | |
continue | |
return logs | |
def test_resume_training_fsdp(self): | |
self._test_resume_training(["--ddp-backend", "fully_sharded"]) | |
def test_resume_training_fsdp_sharded_state(self): | |
self._test_resume_training(["--ddp-backend", "fully_sharded", "--use-sharded-state"]) | |
def test_resume_training_noc10d(self): | |
self._test_resume_training([]) | |
def _test_resume_training(self, extra_clargs, arch="fconv_iwslt_de_en"): | |
flags = [ | |
"--fp16", | |
"--log-format", | |
"json", | |
"--max-update", | |
"10", | |
"--save-interval-updates", | |
"2", | |
"--log-interval", | |
"1", | |
] + extra_clargs | |
world_size = min(torch.cuda.device_count(), 2) | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_fp16") as data_dir: | |
log = os.path.join(data_dir, "train.log") | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir) | |
train_translation_model( | |
data_dir, arch, flags + ["--log-file", log], world_size=world_size, | |
) | |
log2 = os.path.join(data_dir, "resume.log") | |
restore_file = os.path.join(data_dir, "checkpoint_1_2.pt") | |
train_translation_model( | |
data_dir, | |
arch, | |
flags + ["--log-file", log2, "--restore-file", restore_file], | |
world_size=world_size, | |
) | |
l1 = self.parse_logs(log) | |
l2 = self.parse_logs(log2) | |
assert int(l2[0]["num_updates"]) == 3, f"{l1}\n\n {l2}" | |
for k in [ | |
"train_loss", | |
"train_num_updates", | |
"train_ppl", | |
"train_gnorm", | |
]: | |
from_scratch, resumed = l1[-1][k], l2[-1][k] | |
assert ( | |
from_scratch == resumed | |
), f"difference at {k} {from_scratch} != {resumed}" | |
def test_memory_efficient_fp16(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_memory_efficient_fp16") as data_dir: | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir) | |
train_translation_model( | |
data_dir, "fconv_iwslt_de_en", ["--memory-efficient-fp16"] | |
) | |
generate_main(data_dir) | |
def test_transformer_fp16(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_transformer") as data_dir: | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir) | |
train_translation_model( | |
data_dir, | |
"transformer_iwslt_de_en", | |
[ | |
"--encoder-layers", | |
"2", | |
"--decoder-layers", | |
"2", | |
"--encoder-embed-dim", | |
"64", | |
"--decoder-embed-dim", | |
"64", | |
"--fp16", | |
], | |
run_validation=True, | |
) | |
generate_main(data_dir) | |
def test_amp(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_amp") as data_dir: | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir) | |
train_translation_model(data_dir, "fconv_iwslt_de_en", ["--amp"]) | |
generate_main(data_dir) | |
def test_transformer_amp(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_transformer") as data_dir: | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir) | |
train_translation_model( | |
data_dir, | |
"transformer_iwslt_de_en", | |
[ | |
"--encoder-layers", | |
"2", | |
"--decoder-layers", | |
"2", | |
"--encoder-embed-dim", | |
"64", | |
"--decoder-embed-dim", | |
"64", | |
"--amp", | |
], | |
run_validation=True, | |
) | |
generate_main(data_dir) | |
def test_levenshtein_transformer(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory( | |
"test_levenshtein_transformer" | |
) as data_dir: | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir, ["--joined-dictionary"]) | |
train_translation_model( | |
data_dir, | |
"levenshtein_transformer", | |
[ | |
"--apply-bert-init", | |
"--early-exit", | |
"6,6,6", | |
"--criterion", | |
"nat_loss", | |
], | |
task="translation_lev", | |
) | |
gen_config = [ | |
"--task", | |
"translation_lev", | |
"--iter-decode-max-iter", | |
"9", | |
"--iter-decode-eos-penalty", | |
"0", | |
"--print-step", | |
] | |
# non-ensemble generation | |
generate_main(data_dir, gen_config) | |
# ensemble generation | |
generate_main( | |
data_dir, | |
gen_config, | |
path=os.pathsep.join( | |
[ | |
os.path.join(data_dir, "checkpoint_last.pt"), | |
os.path.join(data_dir, "checkpoint_last.pt"), | |
] | |
), | |
) | |
def test_fsdp_checkpoint_generate(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_fsdp_sharded") as data_dir: | |
log = os.path.join(data_dir, "train.log") | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir) | |
world_size = min(torch.cuda.device_count(), 2) | |
train_translation_model( | |
data_dir, | |
"fconv_iwslt_de_en", | |
["--log-file", log, "--ddp-backend", "fully_sharded"], | |
world_size=world_size, | |
) | |
generate_main(data_dir) | |
assert os.path.exists(log) | |
def test_fsdp_sharded_checkpoint_generate(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_fsdp_sharded") as data_dir: | |
log = os.path.join(data_dir, "train.log") | |
create_dummy_data(data_dir) | |
preprocess_translation_data(data_dir) | |
world_size = min(torch.cuda.device_count(), 2) | |
train_translation_model( | |
data_dir, | |
"fconv_iwslt_de_en", | |
["--log-file", log, "--ddp-backend", "fully_sharded", "--use-sharded-state"], | |
world_size=world_size, | |
) | |
generate_main(data_dir, ["--checkpoint-shard-count", str(world_size)]) | |
assert os.path.exists(log) | |
def _quantize_language_model(data_dir, arch, extra_flags=None, run_validation=False): | |
train_parser = options.get_training_parser() | |
train_args = options.parse_args_and_arch( | |
train_parser, | |
[ | |
"--task", | |
"language_modeling", | |
data_dir, | |
"--arch", | |
arch, | |
"--optimizer", | |
"adam", | |
"--lr", | |
"0.0001", | |
"--criterion", | |
"adaptive_loss", | |
"--adaptive-softmax-cutoff", | |
"5,10,15", | |
"--max-tokens", | |
"500", | |
"--tokens-per-sample", | |
"500", | |
"--save-dir", | |
data_dir, | |
"--max-epoch", | |
"1", | |
"--no-progress-bar", | |
"--distributed-world-size", | |
"1", | |
"--ddp-backend", | |
"no_c10d", | |
"--num-workers", | |
"0", | |
] | |
+ (extra_flags or []), | |
) | |
train.main(train_args) | |
# try scalar quantization | |
scalar_quant_train_parser = options.get_training_parser() | |
scalar_quant_train_args = options.parse_args_and_arch( | |
scalar_quant_train_parser, | |
[ | |
"--task", | |
"language_modeling", | |
data_dir, | |
"--arch", | |
arch, | |
"--optimizer", | |
"adam", | |
"--lr", | |
"0.0001", | |
"--criterion", | |
"adaptive_loss", | |
"--adaptive-softmax-cutoff", | |
"5,10,15", | |
"--max-tokens", | |
"500", | |
"--tokens-per-sample", | |
"500", | |
"--save-dir", | |
data_dir, | |
"--max-update", | |
"3", | |
"--no-progress-bar", | |
"--distributed-world-size", | |
"1", | |
"--ddp-backend", | |
"no_c10d", | |
"--num-workers", | |
"0", | |
"--quant-noise-scalar", | |
"0.5", | |
] | |
+ (extra_flags or []), | |
) | |
train.main(scalar_quant_train_args) | |
# try iterative PQ quantization | |
quantize_parser = options.get_training_parser() | |
quantize_args = options.parse_args_and_arch( | |
quantize_parser, | |
[ | |
"--task", | |
"language_modeling", | |
data_dir, | |
"--arch", | |
arch, | |
"--optimizer", | |
"adam", | |
"--lr", | |
"0.0001", | |
"--criterion", | |
"adaptive_loss", | |
"--adaptive-softmax-cutoff", | |
"5,10,15", | |
"--max-tokens", | |
"50", | |
"--tokens-per-sample", | |
"50", | |
"--max-update", | |
"6", | |
"--no-progress-bar", | |
"--distributed-world-size", | |
"1", | |
"--ddp-backend", | |
"no_c10d", | |
"--num-workers", | |
"0", | |
"--restore-file", | |
os.path.join(data_dir, "checkpoint_last.pt"), | |
"--reset-optimizer", | |
"--quantization-config-path", | |
os.path.join( | |
os.path.dirname(__file__), "transformer_quantization_config.yaml" | |
), | |
] | |
+ (extra_flags or []), | |
) | |
train.main(quantize_args) | |
class TestQuantization(unittest.TestCase): | |
def setUp(self): | |
logging.disable(logging.CRITICAL) | |
def tearDown(self): | |
logging.disable(logging.NOTSET) | |
def test_quantization(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_quantization") as data_dir: | |
create_dummy_data(data_dir) | |
preprocess_lm_data(data_dir) | |
# tests both scalar and iterative PQ quantization | |
_quantize_language_model(data_dir, "transformer_lm") | |
class TestOptimizersGPU(unittest.TestCase): | |
def setUp(self): | |
logging.disable(logging.CRITICAL) | |
def tearDown(self): | |
logging.disable(logging.NOTSET) | |
def test_flat_grads(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_flat_grads") as data_dir: | |
# Use just a bit of data and tiny model to keep this test runtime reasonable | |
create_dummy_data(data_dir, num_examples=10, maxlen=5) | |
preprocess_translation_data(data_dir) | |
with self.assertRaises(RuntimeError): | |
# adafactor isn't compatible with flat grads, which | |
# are used by default with --fp16 | |
train_translation_model( | |
data_dir, | |
"lstm", | |
[ | |
"--required-batch-size-multiple", | |
"1", | |
"--encoder-layers", | |
"1", | |
"--encoder-hidden-size", | |
"32", | |
"--decoder-layers", | |
"1", | |
"--optimizer", | |
"adafactor", | |
"--fp16", | |
], | |
) | |
# but it should pass once we set --fp16-no-flatten-grads | |
train_translation_model( | |
data_dir, | |
"lstm", | |
[ | |
"--required-batch-size-multiple", | |
"1", | |
"--encoder-layers", | |
"1", | |
"--encoder-hidden-size", | |
"32", | |
"--decoder-layers", | |
"1", | |
"--optimizer", | |
"adafactor", | |
"--fp16", | |
"--fp16-no-flatten-grads", | |
], | |
) | |
if __name__ == "__main__": | |
unittest.main() | |