Spaces:
Runtime error
Runtime error
import contextlib | |
import unittest | |
import tempfile | |
from io import StringIO | |
import numpy as np | |
from tests.utils import create_dummy_data, preprocess_lm_data, train_language_model | |
try: | |
from pyarrow import plasma | |
from fairseq.data.plasma_utils import PlasmaView, PlasmaStore | |
PYARROW_AVAILABLE = True | |
except ImportError: | |
PYARROW_AVAILABLE = False | |
dummy_path = "dummy" | |
class TestPlasmaView(unittest.TestCase): | |
def setUp(self) -> None: | |
self.tmp_file = tempfile.NamedTemporaryFile() # noqa: P201 | |
self.path = self.tmp_file.name | |
self.server = PlasmaStore.start(path=self.path, nbytes=10000) | |
self.client = plasma.connect(self.path, num_retries=10) | |
def tearDown(self) -> None: | |
self.client.disconnect() | |
self.tmp_file.close() | |
self.server.kill() | |
def test_two_servers_do_not_share_object_id_space(self): | |
data_server_1 = np.array([0, 1]) | |
data_server_2 = np.array([2, 3]) | |
server_2_path = self.path | |
with tempfile.NamedTemporaryFile() as server_1_path: | |
server = PlasmaStore.start(path=server_1_path.name, nbytes=10000) | |
arr1 = PlasmaView( | |
data_server_1, dummy_path, 1, plasma_path=server_1_path.name | |
) | |
assert len(arr1.client.list()) == 1 | |
assert (arr1.array == data_server_1).all() | |
arr2 = PlasmaView(data_server_2, dummy_path, 1, plasma_path=server_2_path) | |
assert (arr2.array == data_server_2).all() | |
assert (arr1.array == data_server_1).all() | |
server.kill() | |
def test_hash_collision(self): | |
data_server_1 = np.array([0, 1]) | |
data_server_2 = np.array([2, 3]) | |
arr1 = PlasmaView(data_server_1, dummy_path, 1, plasma_path=self.path) | |
assert len(arr1.client.list()) == 1 | |
arr2 = PlasmaView(data_server_2, dummy_path, 1, plasma_path=self.path) | |
assert len(arr1.client.list()) == 1 | |
assert len(arr2.client.list()) == 1 | |
assert (arr2.array == data_server_1).all() | |
# New hash key based on tuples | |
arr3 = PlasmaView( | |
data_server_2, dummy_path, (1, 12312312312, None), plasma_path=self.path | |
) | |
assert ( | |
len(arr2.client.list()) == 2 | |
), "No new object was created by using a novel hash key" | |
assert ( | |
arr3.object_id in arr2.client.list() | |
), "No new object was created by using a novel hash key" | |
assert ( | |
arr3.object_id in arr3.client.list() | |
), "No new object was created by using a novel hash key" | |
del arr3, arr2, arr1 | |
def _assert_view_equal(pv1, pv2): | |
np.testing.assert_array_equal(pv1.array, pv2.array) | |
def test_putting_same_array_twice(self): | |
data = np.array([4, 4, 4]) | |
arr1 = PlasmaView(data, dummy_path, 1, plasma_path=self.path) | |
assert len(self.client.list()) == 1 | |
arr1b = PlasmaView( | |
data, dummy_path, 1, plasma_path=self.path | |
) # should not change contents of store | |
arr1c = PlasmaView( | |
None, dummy_path, 1, plasma_path=self.path | |
) # should not change contents of store | |
assert len(self.client.list()) == 1 | |
self._assert_view_equal(arr1, arr1b) | |
self._assert_view_equal(arr1, arr1c) | |
PlasmaView( | |
data, dummy_path, 2, plasma_path=self.path | |
) # new object id, adds new entry | |
assert len(self.client.list()) == 2 | |
new_client = plasma.connect(self.path) | |
assert len(new_client.list()) == 2 # new client can access same objects | |
assert isinstance(arr1.object_id, plasma.ObjectID) | |
del arr1b | |
del arr1c | |
def test_plasma_store_full_raises(self): | |
with tempfile.NamedTemporaryFile() as new_path: | |
server = PlasmaStore.start(path=new_path.name, nbytes=10000) | |
with self.assertRaises(plasma.PlasmaStoreFull): | |
# 2000 floats is more than 2000 bytes | |
PlasmaView( | |
np.random.rand(10000, 1), dummy_path, 1, plasma_path=new_path.name | |
) | |
server.kill() | |
def test_object_id_overflow(self): | |
PlasmaView.get_object_id("", 2 ** 21) | |
def test_training_lm_plasma(self): | |
with contextlib.redirect_stdout(StringIO()): | |
with tempfile.TemporaryDirectory("test_transformer_lm") as data_dir: | |
create_dummy_data(data_dir) | |
preprocess_lm_data(data_dir) | |
train_language_model( | |
data_dir, | |
"transformer_lm", | |
["--use-plasma-view", "--plasma-path", self.path], | |
run_validation=True, | |
) | |