Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import json | |
import os | |
import random | |
import sys | |
from io import StringIO | |
import torch | |
import torch.nn.functional as F | |
from fairseq import options, utils | |
from fairseq.data import Dictionary | |
from fairseq.data.language_pair_dataset import collate | |
from fairseq.models import ( | |
FairseqEncoder, | |
FairseqEncoderDecoderModel, | |
FairseqIncrementalDecoder, | |
) | |
from fairseq.models.fairseq_encoder import EncoderOut | |
from fairseq.tasks import LegacyFairseqTask | |
from fairseq_cli import generate, interactive, preprocess, train, validate | |
import fairseq.distributed.utils as distributed_utils | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
def dummy_dictionary(vocab_size, prefix="token_"): | |
d = Dictionary() | |
for i in range(vocab_size): | |
token = prefix + str(i) | |
d.add_symbol(token) | |
d.finalize(padding_factor=1) # don't add extra padding symbols | |
return d | |
def dummy_dataloader( | |
samples, padding_idx=1, eos_idx=2, batch_size=None, | |
): | |
if batch_size is None: | |
batch_size = len(samples) | |
# add any missing data to samples | |
for i, sample in enumerate(samples): | |
if "id" not in sample: | |
sample["id"] = i | |
# create dataloader | |
dataset = TestDataset(samples) | |
dataloader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=batch_size, | |
collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)), | |
) | |
return iter(dataloader) | |
def sequence_generator_setup(): | |
# construct dummy dictionary | |
d = dummy_dictionary(vocab_size=2) | |
eos = d.eos() | |
w1 = 4 | |
w2 = 5 | |
# construct source data | |
src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]]) | |
src_lengths = torch.LongTensor([2, 2]) | |
args = argparse.Namespace() | |
unk = 0.0 | |
args.beam_probs = [ | |
# step 0: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 | |
# sentence 1: | |
[0.0, unk, 0.9, 0.1], # beam 1 | |
[0.0, unk, 0.9, 0.1], # beam 2 | |
# sentence 2: | |
[0.0, unk, 0.7, 0.3], | |
[0.0, unk, 0.7, 0.3], | |
] | |
), | |
# step 1: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 prefix | |
# sentence 1: | |
[1.0, unk, 0.0, 0.0], # w1: 0.9 (emit: w1 <eos>: 0.9*1.0) | |
[0.0, unk, 0.9, 0.1], # w2: 0.1 | |
# sentence 2: | |
[0.25, unk, 0.35, 0.4], # w1: 0.7 (don't emit: w1 <eos>: 0.7*0.25) | |
[0.00, unk, 0.10, 0.9], # w2: 0.3 | |
] | |
), | |
# step 2: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 prefix | |
# sentence 1: | |
[0.0, unk, 0.1, 0.9], # w2 w1: 0.1*0.9 | |
[ | |
0.6, | |
unk, | |
0.2, | |
0.2, | |
], # w2 w2: 0.1*0.1 (emit: w2 w2 <eos>: 0.1*0.1*0.6) | |
# sentence 2: | |
[ | |
0.60, | |
unk, | |
0.4, | |
0.00, | |
], # w1 w2: 0.7*0.4 (emit: w1 w2 <eos>: 0.7*0.4*0.6) | |
[0.01, unk, 0.0, 0.99], # w2 w2: 0.3*0.9 | |
] | |
), | |
# step 3: | |
torch.FloatTensor( | |
[ | |
# eos w1 w2 prefix | |
# sentence 1: | |
[ | |
1.0, | |
unk, | |
0.0, | |
0.0, | |
], # w2 w1 w2: 0.1*0.9*0.9 (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0) | |
[ | |
1.0, | |
unk, | |
0.0, | |
0.0, | |
], # w2 w1 w1: 0.1*0.9*0.1 (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0) | |
# sentence 2: | |
[ | |
0.1, | |
unk, | |
0.5, | |
0.4, | |
], # w2 w2 w2: 0.3*0.9*0.99 (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1) | |
[ | |
1.0, | |
unk, | |
0.0, | |
0.0, | |
], # w1 w2 w1: 0.7*0.4*0.4 (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0) | |
] | |
), | |
] | |
task = TestTranslationTask.setup_task(args, d, d) | |
model = task.build_model(args) | |
tgt_dict = task.target_dictionary | |
return tgt_dict, w1, w2, src_tokens, src_lengths, model | |
def create_dummy_data(data_dir, num_examples=100, maxlen=20, alignment=False): | |
def _create_dummy_data(filename): | |
data = torch.rand(num_examples * maxlen) | |
data = 97 + torch.floor(26 * data).int() | |
with open(os.path.join(data_dir, filename), "w") as h: | |
offset = 0 | |
for _ in range(num_examples): | |
ex_len = random.randint(1, maxlen) | |
ex_str = " ".join(map(chr, data[offset : offset + ex_len])) | |
print(ex_str, file=h) | |
offset += ex_len | |
def _create_dummy_alignment_data(filename_src, filename_tgt, filename): | |
with open(os.path.join(data_dir, filename_src), "r") as src_f, open( | |
os.path.join(data_dir, filename_tgt), "r" | |
) as tgt_f, open(os.path.join(data_dir, filename), "w") as h: | |
for src, tgt in zip(src_f, tgt_f): | |
src_len = len(src.split()) | |
tgt_len = len(tgt.split()) | |
avg_len = (src_len + tgt_len) // 2 | |
num_alignments = random.randint(avg_len // 2, 2 * avg_len) | |
src_indices = torch.floor(torch.rand(num_alignments) * src_len).int() | |
tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int() | |
ex_str = " ".join( | |
[ | |
"{}-{}".format(src, tgt) | |
for src, tgt in zip(src_indices, tgt_indices) | |
] | |
) | |
print(ex_str, file=h) | |
_create_dummy_data("train.in") | |
_create_dummy_data("train.out") | |
_create_dummy_data("valid.in") | |
_create_dummy_data("valid.out") | |
_create_dummy_data("test.in") | |
_create_dummy_data("test.out") | |
if alignment: | |
_create_dummy_alignment_data("train.in", "train.out", "train.align") | |
_create_dummy_alignment_data("valid.in", "valid.out", "valid.align") | |
_create_dummy_alignment_data("test.in", "test.out", "test.align") | |
def preprocess_lm_data(data_dir): | |
preprocess_parser = options.get_preprocessing_parser() | |
preprocess_args = preprocess_parser.parse_args( | |
[ | |
"--only-source", | |
"--trainpref", | |
os.path.join(data_dir, "train.out"), | |
"--validpref", | |
os.path.join(data_dir, "valid.out"), | |
"--testpref", | |
os.path.join(data_dir, "test.out"), | |
"--destdir", | |
data_dir, | |
] | |
) | |
preprocess.main(preprocess_args) | |
def preprocess_translation_data(data_dir, extra_flags=None): | |
preprocess_parser = options.get_preprocessing_parser() | |
preprocess_args = preprocess_parser.parse_args( | |
[ | |
"--source-lang", | |
"in", | |
"--target-lang", | |
"out", | |
"--trainpref", | |
os.path.join(data_dir, "train"), | |
"--validpref", | |
os.path.join(data_dir, "valid"), | |
"--testpref", | |
os.path.join(data_dir, "test"), | |
"--thresholdtgt", | |
"0", | |
"--thresholdsrc", | |
"0", | |
"--destdir", | |
data_dir, | |
] | |
+ (extra_flags or []), | |
) | |
preprocess.main(preprocess_args) | |
def preprocess_summarization_data(data_dir, extra_flags=None): | |
preprocess_parser = options.get_preprocessing_parser() | |
preprocess_args = preprocess_parser.parse_args( | |
[ | |
"--source-lang", | |
"in", | |
"--target-lang", | |
"out", | |
"--trainpref", | |
os.path.join(data_dir, "train"), | |
"--validpref", | |
os.path.join(data_dir, "valid"), | |
"--testpref", | |
os.path.join(data_dir, "test"), | |
"--thresholdtgt", | |
"0", | |
"--thresholdsrc", | |
"0", | |
"--joined-dictionary", | |
"--destdir", | |
data_dir, | |
] | |
+ (extra_flags or []), | |
) | |
preprocess.main(preprocess_args) | |
def create_laser_data_and_config_json(data_dir): | |
src_langs = ["de", "fr", "ru", "tr", "zh"] | |
tgt_langs = ["en", "es"] | |
config_json = {} | |
config_train_json = [] | |
src_vocab = None | |
tgt_vocab = None | |
for src_lang in src_langs: | |
for tgt_lang in tgt_langs: | |
langpair_folder = f"{src_lang}-{tgt_lang}" | |
langpair_path = os.path.join(data_dir, langpair_folder) | |
os.mkdir(langpair_path) | |
create_dummy_data(langpair_path) | |
preprocess_translation_data(langpair_path, ["--dataset-impl", "cached"]) | |
src_vocab = os.path.join(langpair_path, "dict.in.txt") | |
tgt_vocab = os.path.join(langpair_path, "dict.out.txt") | |
config_train_json.append( | |
{ | |
"id": 0 if tgt_lang == "en" else 1, | |
"src": os.path.join(langpair_path, "train.in-out.in"), | |
"tgt": os.path.join(langpair_path, "train.in-out.out"), | |
} | |
) | |
config_json["src_vocab"] = src_vocab | |
config_json["tgt_vocab"] = tgt_vocab | |
config_json["train"] = config_train_json | |
with open(os.path.join(data_dir, "laserconfig.json"), "w") as config_file: | |
json.dump(config_json, config_file) | |
return config_file | |
def train_translation_model( | |
data_dir, | |
arch, | |
extra_flags=None, | |
task="translation", | |
run_validation=False, | |
lang_flags=None, | |
extra_valid_flags=None, | |
world_size=1, | |
): | |
if lang_flags is None: | |
lang_flags = [ | |
"--source-lang", | |
"in", | |
"--target-lang", | |
"out", | |
] | |
train_parser = options.get_training_parser() | |
train_args = options.parse_args_and_arch( | |
train_parser, | |
[ | |
"--task", | |
task, | |
data_dir, | |
"--save-dir", | |
data_dir, | |
"--arch", | |
arch, | |
"--optimizer", | |
"nag", | |
"--lr", | |
"0.05", | |
"--max-tokens", | |
"500", | |
"--max-epoch", | |
"1", | |
"--no-progress-bar", | |
"--distributed-world-size", | |
str(world_size), | |
"--num-workers", | |
"0", | |
] | |
+ lang_flags | |
+ (extra_flags or []), | |
) | |
cfg = convert_namespace_to_omegaconf(train_args) | |
distributed_utils.call_main(cfg, train.main) | |
if run_validation: | |
# test validation | |
validate_parser = options.get_validation_parser() | |
validate_args = options.parse_args_and_arch( | |
validate_parser, | |
[ | |
"--task", | |
task, | |
data_dir, | |
"--path", | |
os.path.join(data_dir, "checkpoint_last.pt"), | |
"--valid-subset", | |
"valid", | |
"--max-tokens", | |
"500", | |
"--no-progress-bar", | |
"--num-workers", | |
"0", | |
] | |
+ lang_flags | |
+ (extra_valid_flags or []), | |
) | |
validate.main(validate_args) | |
def generate_main(data_dir, extra_flags=None, path=None): | |
if extra_flags is None: | |
extra_flags = [ | |
"--print-alignment", | |
] | |
if path is None: | |
path = os.path.join(data_dir, "checkpoint_last.pt") | |
generate_parser = options.get_generation_parser() | |
generate_args = options.parse_args_and_arch( | |
generate_parser, | |
[ | |
data_dir, | |
"--path", | |
path, | |
"--beam", | |
"3", | |
"--batch-size", | |
"64", | |
"--max-len-b", | |
"5", | |
"--gen-subset", | |
"valid", | |
"--no-progress-bar", | |
"--num-workers", | |
"0", | |
] | |
+ (extra_flags or []), | |
) | |
# evaluate model in batch mode | |
generate.main(generate_args) | |
# evaluate model interactively | |
generate_args.buffer_size = 0 | |
generate_args.input = "-" | |
generate_args.batch_size = None | |
orig_stdin = sys.stdin | |
sys.stdin = StringIO("h e l l o\n") | |
interactive.main(generate_args) | |
sys.stdin = orig_stdin | |
class TestDataset(torch.utils.data.Dataset): | |
def __init__(self, data): | |
super().__init__() | |
self.data = data | |
self.sizes = None | |
def __getitem__(self, index): | |
return self.data[index] | |
def __len__(self): | |
return len(self.data) | |
class TestTranslationTask(LegacyFairseqTask): | |
def __init__(self, args, src_dict, tgt_dict, model): | |
super().__init__(args) | |
self.src_dict = src_dict | |
self.tgt_dict = tgt_dict | |
self.model = model | |
def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None): | |
return cls(args, src_dict, tgt_dict, model) | |
def build_model(self, args): | |
return TestModel.build_model(args, self) | |
def source_dictionary(self): | |
return self.src_dict | |
def target_dictionary(self): | |
return self.tgt_dict | |
class TestModel(FairseqEncoderDecoderModel): | |
def __init__(self, encoder, decoder): | |
super().__init__(encoder, decoder) | |
def build_model(cls, args, task): | |
encoder = TestEncoder(args, task.source_dictionary) | |
decoder = TestIncrementalDecoder(args, task.target_dictionary) | |
return cls(encoder, decoder) | |
class TestEncoder(FairseqEncoder): | |
def __init__(self, args, dictionary): | |
super().__init__(dictionary) | |
self.args = args | |
def forward(self, src_tokens, src_lengths=None, **kwargs): | |
return EncoderOut( | |
encoder_out=src_tokens, | |
encoder_padding_mask=None, | |
encoder_embedding=None, | |
encoder_states=None, | |
src_tokens=None, | |
src_lengths=None, | |
) | |
def reorder_encoder_out(self, encoder_out, new_order): | |
return EncoderOut( | |
encoder_out=encoder_out.encoder_out.index_select(0, new_order), | |
encoder_padding_mask=None, | |
encoder_embedding=None, | |
encoder_states=None, | |
src_tokens=None, | |
src_lengths=None, | |
) | |
class TestIncrementalDecoder(FairseqIncrementalDecoder): | |
def __init__(self, args, dictionary): | |
super().__init__(dictionary) | |
assert hasattr(args, "beam_probs") or hasattr(args, "probs") | |
args.max_decoder_positions = getattr(args, "max_decoder_positions", 100) | |
self.args = args | |
def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None): | |
if incremental_state is not None: | |
prev_output_tokens = prev_output_tokens[:, -1:] | |
bbsz = prev_output_tokens.size(0) | |
vocab = len(self.dictionary) | |
src_len = encoder_out.encoder_out.size(1) | |
tgt_len = prev_output_tokens.size(1) | |
# determine number of steps | |
if incremental_state is not None: | |
# cache step number | |
step = utils.get_incremental_state(self, incremental_state, "step") | |
if step is None: | |
step = 0 | |
utils.set_incremental_state(self, incremental_state, "step", step + 1) | |
steps = [step] | |
else: | |
steps = list(range(tgt_len)) | |
# define output in terms of raw probs | |
if hasattr(self.args, "probs"): | |
assert ( | |
self.args.probs.dim() == 3 | |
), "expected probs to have size bsz*steps*vocab" | |
probs = self.args.probs.index_select(1, torch.LongTensor(steps)) | |
else: | |
probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_() | |
for i, step in enumerate(steps): | |
# args.beam_probs gives the probability for every vocab element, | |
# starting with eos, then unknown, and then the rest of the vocab | |
if step < len(self.args.beam_probs): | |
probs[:, i, self.dictionary.eos() :] = self.args.beam_probs[step] | |
else: | |
probs[:, i, self.dictionary.eos()] = 1.0 | |
# random attention | |
attn = torch.rand(bbsz, tgt_len, src_len) | |
dev = prev_output_tokens.device | |
return probs.to(dev), {"attn": [attn.to(dev)]} | |
def get_normalized_probs(self, net_output, log_probs, _): | |
# the decoder returns probabilities directly | |
probs = net_output[0] | |
if log_probs: | |
return probs.log() | |
else: | |
return probs | |
def max_positions(self): | |
return self.args.max_decoder_positions | |
class TestReshapingEncoder(FairseqEncoder): | |
def __init__(self, args, dictionary): | |
super().__init__(dictionary) | |
self.args = args | |
def forward(self, src_tokens, src_lengths=None, **kwargs): | |
b_sz, t_sz = src_tokens.shape | |
padding_needed = t_sz % 2 | |
x = src_tokens | |
if padding_needed > 0: | |
padding_needed = 2 - padding_needed | |
x = F.pad(x, (0, padding_needed)) | |
return EncoderOut( | |
encoder_out=x.view(b_sz, -1, 2), | |
encoder_padding_mask=None, | |
encoder_embedding=None, | |
encoder_states=None, | |
src_tokens=None, | |
src_lengths=None, | |
) | |
def reorder_encoder_out(self, encoder_out, new_order): | |
return EncoderOut( | |
encoder_out=encoder_out.encoder_out.index_select(0, new_order), | |
encoder_padding_mask=None, | |
encoder_embedding=None, | |
encoder_states=None, | |
src_tokens=None, | |
src_lengths=None, | |
) | |
class TestReshapingModel(FairseqEncoderDecoderModel): | |
def __init__(self, encoder, decoder): | |
super().__init__(encoder, decoder) | |
def build_model(cls, args, task): | |
encoder = TestReshapingEncoder(args, task.source_dictionary) | |
decoder = TestIncrementalDecoder(args, task.target_dictionary) | |
return cls(encoder, decoder) | |
class TestAdditionalInputEncoder(FairseqEncoder): | |
def __init__(self, args, dictionary): | |
super().__init__(dictionary) | |
self.args = args | |
def forward(self, src_tokens, src_lengths=None, **kwargs): | |
assert "fancy_other_input" in kwargs | |
assert kwargs["fancy_other_input"] is not None | |
return EncoderOut( | |
encoder_out=src_tokens, | |
encoder_padding_mask=None, | |
encoder_embedding=None, | |
encoder_states=None, | |
src_tokens=None, | |
src_lengths=None, | |
) | |
def reorder_encoder_out(self, encoder_out, new_order): | |
return EncoderOut( | |
encoder_out=encoder_out.encoder_out.index_select(0, new_order), | |
encoder_padding_mask=None, | |
encoder_embedding=None, | |
encoder_states=None, | |
src_tokens=None, | |
src_lengths=None, | |
) | |
class TestAdditionalInputModel(FairseqEncoderDecoderModel): | |
def __init__(self, encoder, decoder): | |
super().__init__(encoder, decoder) | |
def build_model(cls, args, task): | |
encoder = TestAdditionalInputEncoder(args, task.source_dictionary) | |
decoder = TestIncrementalDecoder(args, task.target_dictionary) | |
return cls(encoder, decoder) | |
def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): | |
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs) | |
decoder_out = self.decoder( | |
prev_output_tokens, encoder_out=encoder_out, **kwargs | |
) | |
return decoder_out | |
def train_language_model( | |
data_dir, | |
arch, | |
extra_flags=None, | |
run_validation=False, | |
extra_valid_flags=None, | |
task="language_modeling", | |
world_size=1, | |
): | |
train_parser = options.get_training_parser() | |
train_args = options.parse_args_and_arch( | |
train_parser, | |
[ | |
"--task", | |
task, | |
data_dir, | |
"--arch", | |
arch, | |
"--optimizer", | |
"adam", | |
"--lr", | |
"0.0001", | |
"--max-tokens", | |
"500", | |
"--tokens-per-sample", | |
"500", | |
"--save-dir", | |
data_dir, | |
"--max-epoch", | |
"1", | |
"--no-progress-bar", | |
"--distributed-world-size", | |
str(world_size), | |
"--ddp-backend", | |
"no_c10d", | |
"--num-workers", | |
"0", | |
] | |
+ (extra_flags or []), | |
) | |
cfg = convert_namespace_to_omegaconf(train_args) | |
distributed_utils.call_main(cfg, train.main) | |
if run_validation: | |
# test validation | |
validate_parser = options.get_validation_parser() | |
validate_args = options.parse_args_and_arch( | |
validate_parser, | |
[ | |
"--task", | |
task, | |
data_dir, | |
"--path", | |
os.path.join(data_dir, "checkpoint_last.pt"), | |
"--valid-subset", | |
"valid", | |
"--max-tokens", | |
"500", | |
"--no-progress-bar", | |
"--num-workers", | |
"0", | |
] | |
+ (extra_valid_flags or []), | |
) | |
validate.main(validate_args) | |