Spaces:
Runtime error
Runtime error
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
from dataclasses import dataclass, field | |
import json | |
import logging | |
import os | |
import math | |
import pickle | |
from typing import Optional | |
from argparse import Namespace | |
from data.file_dataset import FileDataset | |
import torch | |
from fairseq import metrics | |
from fairseq.tasks import register_task | |
from models import search | |
from data.mm_data.vqa_gen_dataset import VqaGenDataset | |
from data import data_utils | |
from tasks.ofa_task import OFAConfig, OFATask | |
from utils.trie import Trie | |
logger = logging.getLogger(__name__) | |
def get_symbols_to_strip_from_output(generator): | |
if hasattr(generator, "symbols_to_strip_from_output"): | |
return generator.symbols_to_strip_from_output | |
else: | |
return {generator.bos, generator.eos} | |
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): | |
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) | |
if bpe is not None: | |
x = bpe.decode(x) | |
if tokenizer is not None: | |
x = tokenizer.decode(x) | |
return x | |
class VqaGenConfig(OFAConfig): | |
max_object_length: int = field( | |
default=30, metadata={"help": "the maximum object sequence length"} | |
) | |
ans2label_dict: Optional[str] = field( | |
default='{"no": 0, "yes":1}', | |
metadata={"help": 'answer to label dict'}, | |
) | |
ans2label_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "path to load ans2label file"}, | |
) | |
unconstrained_training: bool = field( | |
default=False, | |
metadata={"help": "do not use Trie to constrain loss into the closed candidate answer set, default to False. \ | |
If set to True, then open-ended training is facilitated, ans2label_file and ans2label_dict will not be used \ | |
and inference type must be beamsearch"}, | |
) | |
add_object: bool = field( | |
default=False, | |
metadata={"help": "add object to encoder"}, | |
) | |
valid_batch_size: int = field( | |
default=20, | |
metadata={"help": "valid batch size per step"}, | |
) | |
prompt_type: Optional[str] = field( | |
default=None, | |
metadata={"help": "prompt_type"}, | |
) | |
uses_ema: Optional[bool] = field( | |
default=False, | |
metadata={"help": "whether to use ema"}, | |
) | |
val_inference_type: Optional[str] = field( | |
default='allcand', | |
metadata={"help": "inference type in validation (allcand or beamsearch), default to allcand"}, | |
) | |
eval_args: Optional[str] = field( | |
default='{"beam":5,"unnormalized":true,"temperature":1.0}', | |
metadata={ | |
"help": 'generation args as JSON string for inference, only activated when --val-inference-type=beamsearch' | |
}, | |
) | |
class VqaGenTask(OFATask): | |
def __init__(self, cfg: VqaGenConfig, src_dict, tgt_dict): | |
super().__init__(cfg, src_dict, tgt_dict) | |
if not self.cfg.unconstrained_training: | |
self.ans2label_dict = None | |
if self.cfg.ans2label_file is not None: | |
self.ans2label_dict = pickle.load(open(self.cfg.ans2label_file, "rb")) | |
else: | |
self.ans2label_dict = json.loads(self.cfg.ans2label_dict) | |
self.uses_ema = self.cfg.uses_ema | |
assert self.cfg.val_inference_type in ["allcand", "beamsearch"], \ | |
"Unknown inference type encountered: {}, should be allcand or beamsearch.".format(self.cfg.val_inference_type) | |
assert not (self.cfg.unconstrained_training and self.cfg.val_inference_type != "beamsearch"), \ | |
"For open-ended training, there is no fixed candidate answer set, then inference type must be beamsearch" | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
paths = self.cfg.data.split(',') | |
assert len(paths) > 0 | |
if split == 'train': | |
table_path = paths[(epoch - 1) % (len(paths) - 1)] | |
else: | |
table_path = paths[-1] | |
dataset = FileDataset(table_path, self.cfg.selected_cols) | |
self.datasets[split] = VqaGenDataset( | |
split, | |
dataset, | |
self.bpe, | |
self.src_dict, | |
self.tgt_dict, | |
max_src_length=self.cfg.max_src_length, | |
max_object_length=self.cfg.max_object_length, | |
max_tgt_length=self.cfg.max_tgt_length, | |
patch_image_size=self.cfg.patch_image_size, | |
add_object=self.cfg.add_object, | |
constraint_trie=self.constraint_trie, | |
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std, | |
prompt_type=self.cfg.prompt_type | |
) | |
def build_model(self, cfg): | |
model = super().build_model(cfg) | |
# for open-ended training without fixed candidate answer set | |
if self.cfg.unconstrained_training: | |
self.constraint_trie = None | |
# (default) for trie-based constraint training with fixed candidate answer set | |
# (provided by ans2label_file or ans2label_dict) | |
else: | |
answer_item_list = [] | |
self.index2ans = {} | |
self.constraint_trie = Trie(self.tgt_dict.eos()) | |
for i, answer in enumerate(self.ans2label_dict.keys()): | |
answer_item = self.tgt_dict.encode_line( | |
line=self.bpe.encode(' ' + answer), | |
add_if_not_exist=False, | |
append_eos=False | |
).long() | |
answer_item_list.append(answer_item) | |
self.index2ans[i] = answer | |
self.constraint_trie.insert([self.tgt_dict.bos()] + answer_item.tolist() + [self.tgt_dict.eos()]) | |
constraint_mask_list = [] | |
for answer_item in answer_item_list: | |
constraint_mask = torch.zeros((len(answer_item)+1, len(self.tgt_dict))).bool() | |
for i in range(len(answer_item)+1): | |
constraint_prefix_token = [self.src_dict.bos()] + answer_item[:i].tolist() | |
constraint_nodes = self.constraint_trie.get_next_layer(constraint_prefix_token) | |
constraint_mask[i][constraint_nodes] = True | |
constraint_mask_list.append(constraint_mask) | |
if self.cfg.val_inference_type == "allcand": | |
assert not self.cfg.unconstrained_training | |
self.valid_answers_list = [] | |
self.valid_constraint_masks_list = [] | |
for i in range(0, len(answer_item_list), self.cfg.valid_batch_size): | |
self.valid_answers_list += [answer_item_list[i:i+self.cfg.valid_batch_size]] | |
self.valid_constraint_masks_list += [constraint_mask_list[i:i+self.cfg.valid_batch_size]] | |
elif self.cfg.val_inference_type == "beamsearch": | |
gen_args = json.loads(self.cfg.eval_args) | |
self.generator = self.build_generator( | |
[model], Namespace(**gen_args) | |
) | |
else: | |
raise NotImplementedError("Error: Unknown inference type encountered.") | |
return model | |
def build_generator( | |
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None, | |
): | |
seq_generator = super().build_generator(models, args, seq_gen_cls, extra_gen_cls_kwargs, prefix_allowed_tokens_fn) | |
seq_generator.constraint_trie = self.constraint_trie | |
return seq_generator | |
def valid_step(self, sample, model, criterion, **extra_kwargs): | |
loss, sample_size, logging_output = super().valid_step(sample, model, criterion) | |
if self.uses_ema: | |
assert 'ema_model' in extra_kwargs and extra_kwargs['ema_model'] is not None | |
if self.uses_ema: | |
eval_model = extra_kwargs['ema_model'] | |
else: | |
eval_model = model | |
eval_model.eval() | |
with torch.no_grad(): | |
if self.cfg.val_inference_type == "allcand": | |
encoder_out = eval_model.encoder( | |
sample["net_input"]["src_tokens"], | |
src_lengths=sample["net_input"]["src_lengths"], | |
patch_images=sample["net_input"]["patch_images"], | |
patch_masks=sample["net_input"]["patch_masks"] | |
) | |
device = sample["net_input"]["src_tokens"].device | |
eos_item = torch.tensor([self.src_dict.eos()]) | |
pad = self.src_dict.pad() | |
valid_result = [] | |
for valid_answers, valid_constraint_masks in zip(self.valid_answers_list, self.valid_constraint_masks_list): | |
valid_size = len(valid_answers) | |
valid_tgt_items = [ | |
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item]) | |
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers | |
] | |
valid_prev_items = [ | |
torch.cat([torch.tensor(decoder_prompt), valid_answer]) | |
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers | |
] | |
valid_constraint_mask_items = [ | |
torch.cat([torch.zeros(len(decoder_prompt)-1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask], dim=0) | |
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks | |
] | |
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad, left_pad=False).to(device) | |
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad, left_pad=False).to(device) | |
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad, left_pad=False).to(device) | |
new_encoder_out = {} | |
new_encoder_out["encoder_out"] = [ | |
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1) | |
] | |
new_encoder_out["encoder_padding_mask"] = [ | |
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0) | |
] | |
new_encoder_out["position_embeddings"] = [ | |
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0) | |
] | |
decoder_out = eval_model.decoder(valid_prev_output, encoder_out=new_encoder_out) | |
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf) | |
lprobs = eval_model.get_normalized_probs(decoder_out, log_probs=True) | |
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1) | |
scores = scores.masked_fill(valid_tgt.eq(self.tgt_dict.pad()), 0) | |
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0) | |
scores = scores.sum(1) | |
scores = scores.view(-1, valid_size) | |
valid_result.append(scores) | |
valid_result = torch.cat(valid_result, dim=-1) | |
predicts = valid_result.argmax(1).tolist() | |
hyps = [self.index2ans[predict_index] for predict_index in predicts] | |
elif self.cfg.val_inference_type == "beamsearch": | |
raw_hyps = self.inference_step(self.generator, [eval_model], sample, prefix_tokens=sample['prefix_tokens']) | |
hyps = [] | |
for i, sample_id in enumerate(sample["id"].tolist()): | |
prefix_len = sample['prefix_tokens'][i].ne(1).sum().item() | |
detok_hypo_str = decode_fn(raw_hyps[i][0]["tokens"][prefix_len:], self.tgt_dict, self.bpe, self.generator) | |
hyps.append(detok_hypo_str.strip()) | |
else: | |
raise NotImplementedError("Error: Unknown inference type encountered.") | |
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] | |
logging_output["_vqa_score_sum"] = sum(scores) | |
logging_output["_vqa_cnt"] = len(scores) | |
return loss, sample_size, logging_output | |
def reduce_metrics(self, logging_outputs, criterion): | |
super().reduce_metrics(logging_outputs, criterion) | |
def sum_logs(key): | |
import torch | |
result = sum(log.get(key, 0) for log in logging_outputs) | |
if torch.is_tensor(result): | |
result = result.cpu() | |
return result | |
def compute_score(meters): | |
score = meters["_vqa_score_sum"].sum / meters["_vqa_cnt"].sum | |
score = score if isinstance(score, float) else score.item() | |
return round(score, 4) | |
if sum_logs("_vqa_cnt") > 0: | |
metrics.log_scalar("_vqa_score_sum", sum_logs("_vqa_score_sum")) | |
metrics.log_scalar("_vqa_cnt", sum_logs("_vqa_cnt")) | |
metrics.log_derived("vqa_score", compute_score) | |