Spaces:
Runtime error
Runtime error
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
import json | |
import logging | |
import math | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import torch | |
from fairseq import metrics | |
from fairseq.dataclass import ChoiceEnum | |
from fairseq.tasks import register_task | |
from tasks.ofa_task import OFATask, OFAConfig | |
from data.nlu_data.cola_dataset import COLADataset | |
from data.file_dataset import FileDataset | |
from utils.trie import Trie | |
logger = logging.getLogger(__name__) | |
class COLAConfig(OFAConfig): | |
ans2label_dict: Optional[str] = field( | |
default='{"no": 0, "yes": 1}', | |
metadata={"help": 'answer to label dict'}, | |
) | |
prompt_type: ChoiceEnum(["none", "src", "prev_output"]) = field( | |
default="none", | |
metadata={"help": "decoder prompt"}, | |
) | |
class COLATask(OFATask): | |
def __init__(self, cfg: COLAConfig, src_dict, tgt_dict): | |
super().__init__(cfg, src_dict, tgt_dict) | |
self.ans2label_dict = json.loads(self.cfg.ans2label_dict) | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
paths = self.cfg.data.split(',') | |
assert len(paths) > 0 | |
if split == 'train': | |
file_path = paths[(epoch - 1) % (len(paths) - 1)] | |
else: | |
file_path = paths[-1] | |
dataset = FileDataset(file_path, self.cfg.selected_cols) | |
self.datasets[split] = COLADataset( | |
split, | |
dataset, | |
self.bpe, | |
self.src_dict, | |
self.tgt_dict, | |
max_src_length=self.cfg.max_src_length, | |
max_tgt_length=self.cfg.max_tgt_length, | |
constraint_trie=self.constraint_trie, | |
prompt_type=self.cfg.prompt_type | |
) | |
def build_model(self, cfg): | |
model = super().build_model(cfg) | |
self.constraint_trie = Trie(self.tgt_dict.eos()) | |
for i, answer in enumerate(self.ans2label_dict.keys()): | |
answer_item = self.tgt_dict.encode_line( | |
line=self.bpe.encode(' ' + answer), | |
add_if_not_exist=False, | |
append_eos=False | |
).long() | |
self.constraint_trie.insert([self.tgt_dict.bos()] + answer_item.tolist() + [self.tgt_dict.eos()]) | |
return model | |
def build_generator( | |
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None, | |
): | |
seq_generator = super().build_generator(models, args, seq_gen_cls, extra_gen_cls_kwargs, prefix_allowed_tokens_fn) | |
seq_generator.constraint_trie = self.constraint_trie | |
return seq_generator | |
def valid_step(self, sample, model, criterion): | |
loss, sample_size, logging_output = super().valid_step(sample, model, criterion) | |
model.eval() | |
with torch.no_grad(): | |
net_output = model(**sample["net_input"]) | |
net_output[0].masked_fill_(~sample["constraint_masks"], -math.inf) | |
last_token_ids = sample["net_input"]["prev_output_tokens"].ne(self.src_dict.pad()).sum(1, keepdim=True) - 1 | |
logits = net_output[0].gather(1, last_token_ids.unsqueeze(2).expand(-1, -1, net_output[0].size(2))) | |
logits = logits.squeeze(1) | |
predicts = logits.argmax(1).tolist() | |
hyps = [self.bpe.decode(self.src_dict[predict]).strip() for predict in predicts] | |
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)] | |
TP = sum([ref_dict.get(hyp, 0) if hyp == 'yes' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)]) | |
FP = sum([1 - ref_dict.get(hyp, 0) if hyp == 'yes' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)]) | |
TN = sum([ref_dict.get(hyp, 0) if hyp == 'no' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)]) | |
FN = sum([1 - ref_dict.get(hyp, 0) if hyp == 'no' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)]) | |
logging_output["_score_sum"] = sum(scores) | |
logging_output["_score_cnt"] = len(scores) | |
logging_output["_TP"] = TP | |
logging_output["_FP"] = FP | |
logging_output["_TN"] = TN | |
logging_output["_FN"] = FN | |
return loss, sample_size, logging_output | |
def reduce_metrics(self, logging_outputs, criterion): | |
super().reduce_metrics(logging_outputs, criterion) | |
def sum_logs(key): | |
import torch | |
result = sum(log.get(key, 0) for log in logging_outputs) | |
if torch.is_tensor(result): | |
result = result.cpu() | |
return result | |
def compute_acc(meters): | |
score = meters["_score_sum"].sum / meters["_score_cnt"].sum | |
score = score if isinstance(score, float) else score.item() | |
return round(score, 4) | |
def compute_mcc(meters): | |
TP = meters["_TP"].sum | |
FP = meters["_FP"].sum | |
TN = meters["_TN"].sum | |
FN = meters["_FN"].sum | |
score = (TP*TN - FP*FN) / math.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) | |
score = score if isinstance(score, float) else score.item() | |
return round(score, 4) | |
if sum_logs("_score_cnt") > 0: | |
metrics.log_scalar("_score_sum", sum_logs("_score_sum")) | |
metrics.log_scalar("_score_cnt", sum_logs("_score_cnt")) | |
metrics.log_scalar("_TP", sum_logs("_TP")) | |
metrics.log_scalar("_FP", sum_logs("_FP")) | |
metrics.log_scalar("_TN", sum_logs("_TN")) | |
metrics.log_scalar("_FN", sum_logs("_FN")) | |
metrics.log_derived("acc", compute_acc) | |
metrics.log_derived("mcc", compute_mcc) | |