Spaces:
Runtime error
Runtime error
JustinLin610
commited on
Commit
·
97fc61f
1
Parent(s):
dd78d66
remove unnecessary files
Browse files- data/mm_data/image_gen_dataset.py +0 -171
- tasks/mm_tasks/__init__.py +0 -1
- tasks/mm_tasks/image_gen.py +0 -329
data/mm_data/image_gen_dataset.py
DELETED
@@ -1,171 +0,0 @@
|
|
1 |
-
# Copyright 2022 The OFA-Sys Team.
|
2 |
-
# All rights reserved.
|
3 |
-
# This source code is licensed under the Apache 2.0 license
|
4 |
-
# found in the LICENSE file in the root directory.
|
5 |
-
|
6 |
-
from io import BytesIO
|
7 |
-
|
8 |
-
import logging
|
9 |
-
import warnings
|
10 |
-
import base64
|
11 |
-
import random
|
12 |
-
|
13 |
-
import numpy as np
|
14 |
-
import torch
|
15 |
-
|
16 |
-
from PIL import Image, ImageFile
|
17 |
-
from itertools import chain
|
18 |
-
from data.ofa_dataset import OFADataset
|
19 |
-
from data import data_utils
|
20 |
-
|
21 |
-
from PIL import Image
|
22 |
-
from io import BytesIO
|
23 |
-
import base64
|
24 |
-
|
25 |
-
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
26 |
-
ImageFile.MAX_IMAGE_PIXELS = None
|
27 |
-
Image.MAX_IMAGE_PIXELS = None
|
28 |
-
|
29 |
-
logger = logging.getLogger(__name__)
|
30 |
-
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
|
31 |
-
|
32 |
-
|
33 |
-
def collate(
|
34 |
-
samples,
|
35 |
-
pad_idx,
|
36 |
-
eos_idx,
|
37 |
-
left_pad_source=False,
|
38 |
-
left_pad_target=False,
|
39 |
-
):
|
40 |
-
if len(samples) == 0:
|
41 |
-
return {}
|
42 |
-
|
43 |
-
def merge(key, left_pad, move_eos_to_beginning=False):
|
44 |
-
return data_utils.collate_tokens(
|
45 |
-
[s[key] for s in samples],
|
46 |
-
pad_idx,
|
47 |
-
eos_idx,
|
48 |
-
left_pad,
|
49 |
-
move_eos_to_beginning,
|
50 |
-
)
|
51 |
-
|
52 |
-
id = np.array([s["id"] for s in samples])
|
53 |
-
src_tokens = merge("source", left_pad=left_pad_source)
|
54 |
-
# sort by descending source length
|
55 |
-
src_lengths = torch.LongTensor([s["source"].ne(pad_idx).long().sum() for s in samples])
|
56 |
-
|
57 |
-
code_images = np.array([s["code_image"] for s in samples])
|
58 |
-
code_masks = torch.cat([sample['code_mask'] for sample in samples])
|
59 |
-
|
60 |
-
prev_output_tokens = None
|
61 |
-
target = None
|
62 |
-
if samples[0].get("target", None) is not None:
|
63 |
-
target = merge("target", left_pad=left_pad_target)
|
64 |
-
tgt_lengths = torch.LongTensor(
|
65 |
-
[s["target"].ne(pad_idx).long().sum() for s in samples]
|
66 |
-
)
|
67 |
-
ntokens = tgt_lengths.sum().item()
|
68 |
-
|
69 |
-
if samples[0].get("prev_output_tokens", None) is not None:
|
70 |
-
prev_output_tokens = merge("prev_output_tokens", left_pad=left_pad_target)
|
71 |
-
else:
|
72 |
-
ntokens = src_lengths.sum().item()
|
73 |
-
|
74 |
-
batch = {
|
75 |
-
"id": id,
|
76 |
-
"nsentences": len(samples),
|
77 |
-
"ntokens": ntokens,
|
78 |
-
"net_input": {
|
79 |
-
"src_tokens": src_tokens,
|
80 |
-
"src_lengths": src_lengths,
|
81 |
-
"code_masks": code_masks,
|
82 |
-
"prev_output_tokens": prev_output_tokens
|
83 |
-
},
|
84 |
-
"code_images": code_images,
|
85 |
-
"target": target
|
86 |
-
}
|
87 |
-
|
88 |
-
return batch
|
89 |
-
|
90 |
-
|
91 |
-
def preprocess_vqgan(x):
|
92 |
-
x = 2. * x - 1.
|
93 |
-
return x
|
94 |
-
|
95 |
-
|
96 |
-
class ImageGenDataset(OFADataset):
|
97 |
-
def __init__(
|
98 |
-
self,
|
99 |
-
split,
|
100 |
-
dataset,
|
101 |
-
bpe,
|
102 |
-
src_dict,
|
103 |
-
tgt_dict=None,
|
104 |
-
max_src_length=128,
|
105 |
-
code_dict_size=8192,
|
106 |
-
code_image_size=256,
|
107 |
-
num_bins=1000
|
108 |
-
):
|
109 |
-
super().__init__(split, dataset, bpe, src_dict, tgt_dict)
|
110 |
-
self.max_src_length = max_src_length
|
111 |
-
|
112 |
-
self.code_dict_size = code_dict_size
|
113 |
-
self.num_codes = (code_image_size // 8) ** 2
|
114 |
-
self.num_bins = num_bins
|
115 |
-
|
116 |
-
slice_id = self.dataset.slice_id
|
117 |
-
empty_img = Image.new('RGB', (code_image_size, code_image_size))
|
118 |
-
empty_img.save(f'temp_{slice_id}.png')
|
119 |
-
img = Image.open(f'temp_{slice_id}.png')
|
120 |
-
img_buffer = BytesIO()
|
121 |
-
img.save(img_buffer, format=img.format)
|
122 |
-
byte_data = img_buffer.getvalue()
|
123 |
-
self.empty_image_base64 = base64.urlsafe_b64encode(byte_data)
|
124 |
-
|
125 |
-
def __getitem__(self, index):
|
126 |
-
|
127 |
-
data = self.dataset[index]
|
128 |
-
if len(data) == 2:
|
129 |
-
uniq_id, text = data
|
130 |
-
image_code = [0] * 1024
|
131 |
-
image = self.empty_image_base64
|
132 |
-
elif len(data) == 3:
|
133 |
-
uniq_id, text, image_code = data
|
134 |
-
image_code = [int(num) for num in image_code.strip().split()]
|
135 |
-
image = self.empty_image_base64
|
136 |
-
elif len(data) == 4:
|
137 |
-
uniq_id, image, text, image_code = data
|
138 |
-
image_code = [int(num) for num in image_code.strip().split()]
|
139 |
-
else:
|
140 |
-
raise NotImplementedError
|
141 |
-
code_mask = torch.tensor([True])
|
142 |
-
image_code = torch.LongTensor(image_code)
|
143 |
-
tgt_item = image_code + len(self.src_dict) - self.code_dict_size - self.num_bins
|
144 |
-
target_item = torch.cat([tgt_item, self.eos_item])
|
145 |
-
prev_output_item = torch.cat([self.bos_item, tgt_item])
|
146 |
-
|
147 |
-
caption_token_list = text.strip().split()
|
148 |
-
caption = ' '.join(caption_token_list[:self.max_src_length])
|
149 |
-
src_item = self.encode_text(
|
150 |
-
" what is the complete image? caption: {}".format(caption),
|
151 |
-
append_bos=True,
|
152 |
-
append_eos=True
|
153 |
-
)
|
154 |
-
example = {
|
155 |
-
"id": uniq_id,
|
156 |
-
"source": src_item,
|
157 |
-
"code_mask": code_mask,
|
158 |
-
"code_image": image,
|
159 |
-
"target": target_item,
|
160 |
-
"prev_output_tokens": prev_output_item
|
161 |
-
}
|
162 |
-
return example
|
163 |
-
|
164 |
-
def collater(self, samples, pad_to_length=None):
|
165 |
-
"""Merge a list of samples to form a mini-batch.
|
166 |
-
Args:
|
167 |
-
samples (List[dict]): samples to collate
|
168 |
-
Returns:
|
169 |
-
dict: a mini-batch containing the data of the task
|
170 |
-
"""
|
171 |
-
return collate(samples, pad_idx=self.pad, eos_idx=self.eos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tasks/mm_tasks/__init__.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
from .caption import CaptionTask
|
2 |
-
from .image_gen import ImageGenTask
|
3 |
from .refcoco import RefcocoTask
|
4 |
from .snli_ve import SnliVeTask
|
5 |
from .vqa_gen import VqaGenTask
|
|
|
1 |
from .caption import CaptionTask
|
|
|
2 |
from .refcoco import RefcocoTask
|
3 |
from .snli_ve import SnliVeTask
|
4 |
from .vqa_gen import VqaGenTask
|
tasks/mm_tasks/image_gen.py
DELETED
@@ -1,329 +0,0 @@
|
|
1 |
-
# Copyright 2022 The OFA-Sys Team.
|
2 |
-
# All rights reserved.
|
3 |
-
# This source code is licensed under the Apache 2.0 license
|
4 |
-
# found in the LICENSE file in the root directory.
|
5 |
-
|
6 |
-
from dataclasses import dataclass, field
|
7 |
-
import json
|
8 |
-
import logging
|
9 |
-
import os
|
10 |
-
import math
|
11 |
-
import base64
|
12 |
-
from typing import Optional
|
13 |
-
from argparse import Namespace
|
14 |
-
from omegaconf import DictConfig, OmegaConf
|
15 |
-
from torchvision import transforms
|
16 |
-
from PIL import Image
|
17 |
-
from io import BytesIO
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import numpy as np
|
21 |
-
from fairseq import metrics
|
22 |
-
from fairseq.tasks import register_task
|
23 |
-
from fairseq.dataclass import ChoiceEnum
|
24 |
-
|
25 |
-
from models import search, clip
|
26 |
-
from models.taming.models.vqgan import GumbelVQ
|
27 |
-
from data.mm_data.image_gen_dataset import ImageGenDataset
|
28 |
-
from data.file_dataset import FileDataset
|
29 |
-
|
30 |
-
from tasks.ofa_task import OFATask, OFAConfig
|
31 |
-
|
32 |
-
logger = logging.getLogger(__name__)
|
33 |
-
|
34 |
-
|
35 |
-
def custom_to_pil(x):
|
36 |
-
x = x.detach().cpu()
|
37 |
-
x = torch.clamp(x, -1., 1.)
|
38 |
-
x = (x + 1.) / 2.
|
39 |
-
x = x.permute(1, 2, 0).numpy()
|
40 |
-
x = (255 * x).astype(np.uint8)
|
41 |
-
x = Image.fromarray(x)
|
42 |
-
if not x.mode == "RGB":
|
43 |
-
x = x.convert("RGB")
|
44 |
-
return x
|
45 |
-
|
46 |
-
|
47 |
-
EVAL_CLIP_METHOD = ChoiceEnum(["ii_sim", "ti_sim"])
|
48 |
-
|
49 |
-
@dataclass
|
50 |
-
class ImageGenConfig(OFAConfig):
|
51 |
-
sampling_times: int = field(
|
52 |
-
default=1, metadata={"help": "sample times"}
|
53 |
-
)
|
54 |
-
|
55 |
-
code_image_size: int = field(
|
56 |
-
default=256, metadata={"help": "code image size"}
|
57 |
-
)
|
58 |
-
|
59 |
-
# options for reporting CLIP score during validation
|
60 |
-
eval_clip_method: EVAL_CLIP_METHOD = field(
|
61 |
-
default='ti_sim',
|
62 |
-
metadata={
|
63 |
-
"help": "evaluation with CLIP scores. ii_sim means Similarity between generated Images and ref Images, ti_sim means Similarity between generated Images and input Text"}
|
64 |
-
)
|
65 |
-
|
66 |
-
eval_args: Optional[str] = field(
|
67 |
-
default='{}',
|
68 |
-
metadata={
|
69 |
-
"help": 'generation args for clip scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string'
|
70 |
-
},
|
71 |
-
)
|
72 |
-
|
73 |
-
scst: bool = field(
|
74 |
-
default=False, metadata={"help": "Self-critical sequence training"}
|
75 |
-
)
|
76 |
-
scst_args: str = field(
|
77 |
-
default='{}',
|
78 |
-
metadata={
|
79 |
-
"help": 'generation args for Self-critical sequence training, as JSON string'
|
80 |
-
},
|
81 |
-
)
|
82 |
-
|
83 |
-
vqgan_model_path: Optional[str] = field(
|
84 |
-
default=None,
|
85 |
-
metadata={"help": "path of vqgan model"}
|
86 |
-
)
|
87 |
-
vqgan_config_path: Optional[str] = field(
|
88 |
-
default=None,
|
89 |
-
metadata={"help": "path of vqgan config"}
|
90 |
-
)
|
91 |
-
clip_model_path: Optional[str] = field(
|
92 |
-
default=None,
|
93 |
-
metadata={"help": "clip model path"}
|
94 |
-
)
|
95 |
-
gen_images_path: str = field(
|
96 |
-
default='', metadata={"help": "where to store generated images during evalution. Don't dump images if None. "}
|
97 |
-
)
|
98 |
-
|
99 |
-
|
100 |
-
@register_task("image_gen", dataclass=ImageGenConfig)
|
101 |
-
class ImageGenTask(OFATask):
|
102 |
-
def __init__(self, cfg: ImageGenConfig, src_dict, tgt_dict):
|
103 |
-
super().__init__(cfg, src_dict, tgt_dict)
|
104 |
-
|
105 |
-
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
|
106 |
-
paths = self.cfg.data.split(',')
|
107 |
-
assert len(paths) > 0
|
108 |
-
|
109 |
-
if split == 'train':
|
110 |
-
file_path = paths[(epoch - 1) % (len(paths) - 1)]
|
111 |
-
else:
|
112 |
-
file_path = paths[-1]
|
113 |
-
dataset = FileDataset(file_path, self.cfg.selected_cols)
|
114 |
-
|
115 |
-
self.datasets[split] = ImageGenDataset(
|
116 |
-
split,
|
117 |
-
dataset,
|
118 |
-
self.bpe,
|
119 |
-
self.src_dict,
|
120 |
-
self.tgt_dict,
|
121 |
-
max_src_length=self.cfg.max_src_length,
|
122 |
-
code_dict_size=self.cfg.code_dict_size,
|
123 |
-
code_image_size=self.cfg.code_image_size
|
124 |
-
)
|
125 |
-
|
126 |
-
def build_model(self, cfg):
|
127 |
-
model = super().build_model(cfg)
|
128 |
-
|
129 |
-
device = torch.cuda.current_device()
|
130 |
-
clip_model, clip_preprocess = clip.load(self.cfg.clip_model_path, device=device)
|
131 |
-
self.clip_model = clip_model
|
132 |
-
self.clip_preprocess = clip_preprocess
|
133 |
-
self.clip_model.to(device)
|
134 |
-
self.clip_model.eval()
|
135 |
-
|
136 |
-
vqgan_config = OmegaConf.load(self.cfg.vqgan_config_path)
|
137 |
-
vqgan = GumbelVQ(**vqgan_config.model.params)
|
138 |
-
sd = torch.load(self.cfg.vqgan_model_path, map_location="cpu")["state_dict"]
|
139 |
-
missing, unexpected = vqgan.load_state_dict(sd, strict=False)
|
140 |
-
for k, v in vqgan.named_parameters():
|
141 |
-
v.requires_grad = False
|
142 |
-
self.image_tokenizer = vqgan
|
143 |
-
self.image_tokenizer.to(device)
|
144 |
-
self.image_tokenizer.eval()
|
145 |
-
|
146 |
-
gen_args = json.loads(self.cfg.eval_args)
|
147 |
-
self.sequence_generator = self.build_generator(
|
148 |
-
[model], Namespace(**gen_args)
|
149 |
-
)
|
150 |
-
if self.cfg.scst:
|
151 |
-
scst_args = json.loads(self.cfg.scst_args)
|
152 |
-
self.scst_generator = self.build_generator(
|
153 |
-
[model], Namespace(**scst_args)
|
154 |
-
)
|
155 |
-
|
156 |
-
return model
|
157 |
-
|
158 |
-
def build_generator(
|
159 |
-
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None,
|
160 |
-
):
|
161 |
-
"""
|
162 |
-
Build a :class:`~fairseq.SequenceGenerator` instance for this
|
163 |
-
task.
|
164 |
-
|
165 |
-
Args:
|
166 |
-
models (List[~fairseq.models.FairseqModel]): ensemble of models
|
167 |
-
args (fairseq.dataclass.configs.GenerationConfig):
|
168 |
-
configuration object (dataclass) for generation
|
169 |
-
extra_gen_cls_kwargs (Dict[str, Any]): extra options to pass
|
170 |
-
through to SequenceGenerator
|
171 |
-
prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]]):
|
172 |
-
If provided, this function constrains the beam search to
|
173 |
-
allowed tokens only at each step. The provided function
|
174 |
-
should take 2 arguments: the batch ID (`batch_id: int`)
|
175 |
-
and a unidimensional tensor of token ids (`inputs_ids:
|
176 |
-
torch.Tensor`). It has to return a `List[int]` with the
|
177 |
-
allowed tokens for the next generation step conditioned
|
178 |
-
on the previously generated tokens (`inputs_ids`) and
|
179 |
-
the batch ID (`batch_id`). This argument is useful for
|
180 |
-
constrained generation conditioned on the prefix, as
|
181 |
-
described in "Autoregressive Entity Retrieval"
|
182 |
-
(https://arxiv.org/abs/2010.00904) and
|
183 |
-
https://github.com/facebookresearch/GENRE.
|
184 |
-
"""
|
185 |
-
from models.sequence_generator import SequenceGenerator
|
186 |
-
|
187 |
-
# Choose search strategy. Defaults to Sampling.
|
188 |
-
self.sampling_times = self.cfg.sampling_times
|
189 |
-
sampling = True # we have to use sampling instead of beam search in image generation task
|
190 |
-
sampling_topk = getattr(args, "sampling_topk", -1)
|
191 |
-
sampling_topp = getattr(args, "sampling_topp", -1.0)
|
192 |
-
|
193 |
-
assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling"
|
194 |
-
assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling"
|
195 |
-
|
196 |
-
search_strategy = search.Sampling(
|
197 |
-
self.target_dictionary, sampling_topk, sampling_topp
|
198 |
-
)
|
199 |
-
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {}
|
200 |
-
|
201 |
-
return SequenceGenerator(
|
202 |
-
models,
|
203 |
-
self.target_dictionary,
|
204 |
-
beam_size=getattr(args, "beam", 5),
|
205 |
-
max_len_a=getattr(args, "max_len_a", 0),
|
206 |
-
max_len_b=getattr(args, "max_len_b", 200),
|
207 |
-
min_len=getattr(args, "min_len", 1),
|
208 |
-
normalize_scores=(not getattr(args, "unnormalized", False)),
|
209 |
-
len_penalty=getattr(args, "lenpen", 1),
|
210 |
-
unk_penalty=getattr(args, "unkpen", 0),
|
211 |
-
temperature=getattr(args, "temperature", 1.0),
|
212 |
-
match_source_len=getattr(args, "match_source_len", False),
|
213 |
-
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
|
214 |
-
search_strategy=search_strategy,
|
215 |
-
constraint_range=self.cfg.constraint_range,
|
216 |
-
gen_code=True,
|
217 |
-
**extra_gen_cls_kwargs,
|
218 |
-
)
|
219 |
-
|
220 |
-
def compute_ref_image_similarity(self, hyps, ref, device):
|
221 |
-
hyp_images = torch.stack(
|
222 |
-
[self.clip_preprocess(hyp_image) for hyp_image in hyps], dim=0
|
223 |
-
).to(device)
|
224 |
-
|
225 |
-
ref_images = self.clip_preprocess(ref).unsqueeze(0).to(device)
|
226 |
-
with torch.no_grad():
|
227 |
-
hyp_image_features = self.clip_model.encode_image(hyp_images)
|
228 |
-
ref_image_features = self.clip_model.encode_image(ref_images)
|
229 |
-
hyp_image_features /= hyp_image_features.norm(dim=-1, keepdim=True)
|
230 |
-
ref_image_features /= ref_image_features.norm(dim=-1, keepdim=True)
|
231 |
-
similarity = hyp_image_features @ ref_image_features.T
|
232 |
-
# scores.append(similarity.max().item())
|
233 |
-
sorted_score, indices = torch.sort(similarity.view(-1), descending=True)
|
234 |
-
return sorted_score, indices
|
235 |
-
|
236 |
-
def compute_text_similarity(self, hyps, text, device):
|
237 |
-
hyp_images = torch.stack(
|
238 |
-
[self.clip_preprocess(hyp_image) for hyp_image in hyps], dim=0
|
239 |
-
).to(device)
|
240 |
-
|
241 |
-
clip_input = clip.tokenize([text]).to(device)
|
242 |
-
with torch.no_grad():
|
243 |
-
hyp_image_features = self.clip_model.encode_image(hyp_images)
|
244 |
-
hyp_image_features /= hyp_image_features.norm(dim=-1, keepdim=True)
|
245 |
-
text_features = self.clip_model.encode_text(clip_input)
|
246 |
-
text_features /= text_features.norm(dim=-1, keepdim=True)
|
247 |
-
ti_similarity = hyp_image_features @ text_features.T
|
248 |
-
sorted_score, indices = torch.sort(ti_similarity.view(-1), descending=True)
|
249 |
-
return sorted_score, indices
|
250 |
-
|
251 |
-
def valid_step(self, sample, model, criterion):
|
252 |
-
loss, sample_size, logging_output = criterion(model, sample)
|
253 |
-
|
254 |
-
model.eval()
|
255 |
-
device = sample['target'].device
|
256 |
-
|
257 |
-
hyps, ref = self.inference_image(self.sequence_generator, sample, [model])
|
258 |
-
scores = []
|
259 |
-
|
260 |
-
tokens = sample['net_input']['src_tokens'][0].view(-1).tolist()
|
261 |
-
caption = self.bpe.decode(self.tgt_dict.string([token for token in tokens if token >= 4]))[
|
262 |
-
38:].replace('/', '')
|
263 |
-
if self.cfg.eval_clip_method == 'ii_sim':
|
264 |
-
similarity_score, indices = self.compute_ref_image_similarity(hyps, ref, device)
|
265 |
-
elif self.cfg.eval_clip_method == 'ti_sim':
|
266 |
-
similarity_score, indices = self.compute_text_similarity(hyps, caption, device)
|
267 |
-
else:
|
268 |
-
raise ValueError("unsupported eval method.")
|
269 |
-
|
270 |
-
scores.append(similarity_score.max().item())
|
271 |
-
sorted_hyps = [hyps[indice] for indice in indices]
|
272 |
-
|
273 |
-
if self.cfg.gen_images_path:
|
274 |
-
caption_tokens = sample['net_input']['src_tokens'][0].view(-1).tolist()
|
275 |
-
caption = self.bpe.decode(self.tgt_dict.string([token for token in caption_tokens if token >= 4]))[
|
276 |
-
38:].replace('/', '')
|
277 |
-
self.dump_images(sorted_hyps, text=caption, path=os.path.join(self.cfg.gen_images_path, 'all_results'))
|
278 |
-
self.dump_images(sorted_hyps, text=caption, path=os.path.join(self.cfg.gen_images_path, 'top1'), topk=1)
|
279 |
-
|
280 |
-
logging_output["_score_sum"] = sum(scores)
|
281 |
-
logging_output["_score_cnt"] = len(scores)
|
282 |
-
|
283 |
-
return loss, sample_size, logging_output
|
284 |
-
|
285 |
-
def reduce_metrics(self, logging_outputs, criterion):
|
286 |
-
super().reduce_metrics(logging_outputs, criterion)
|
287 |
-
|
288 |
-
def sum_logs(key):
|
289 |
-
import torch
|
290 |
-
result = sum(log.get(key, 0) for log in logging_outputs)
|
291 |
-
if torch.is_tensor(result):
|
292 |
-
result = result.cpu()
|
293 |
-
return result
|
294 |
-
|
295 |
-
def compute_score(meters):
|
296 |
-
score = meters["_score_sum"].sum / meters["_score_cnt"].sum
|
297 |
-
score = score if isinstance(score, float) else score.item()
|
298 |
-
return round(score, 3)
|
299 |
-
|
300 |
-
if sum_logs("_score_cnt") > 0:
|
301 |
-
metrics.log_scalar("_score_sum", sum_logs("_score_sum"))
|
302 |
-
metrics.log_scalar("_score_cnt", sum_logs("_score_cnt"))
|
303 |
-
metrics.log_derived("score", compute_score)
|
304 |
-
|
305 |
-
def inference_image(self, generator, sample, models):
|
306 |
-
hyps, ref = [], None
|
307 |
-
for j in range(self.sampling_times):
|
308 |
-
gen_out = self.inference_step(generator, models, sample)
|
309 |
-
for i in range(len(gen_out)):
|
310 |
-
with torch.no_grad():
|
311 |
-
tokens = torch.stack([item['tokens'][:-1] for item in gen_out[i]], dim=0)
|
312 |
-
tokens += -len(self.src_dict) + self.cfg.code_dict_size + self.cfg.num_bins
|
313 |
-
images = self.image_tokenizer.decode_code(
|
314 |
-
tokens.view(-1, self.cfg.code_image_size // 8, self.cfg.code_image_size // 8)
|
315 |
-
)
|
316 |
-
images = [custom_to_pil(image) for image in images]
|
317 |
-
hyps += images
|
318 |
-
if 'code_images' in sample:
|
319 |
-
ref = Image.open(BytesIO(base64.urlsafe_b64decode(sample['code_images'][0]))).convert('RGB')
|
320 |
-
|
321 |
-
return hyps, ref
|
322 |
-
|
323 |
-
def dump_images(self, images, text, path, topk=None):
|
324 |
-
os.makedirs(path, exist_ok=True)
|
325 |
-
if topk:
|
326 |
-
images = images[:topk]
|
327 |
-
for j, image in enumerate(images):
|
328 |
-
save_path = os.path.join(path, f'{text}_{j}.png')
|
329 |
-
image.save(save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|