Spaces:
Runtime error
Runtime error
JustinLin610
commited on
Commit
·
9eb2477
1
Parent(s):
08374eb
remove unnecessary eval functions
Browse files- utils/eval_utils.py +1 -331
utils/eval_utils.py
CHANGED
@@ -33,32 +33,6 @@ def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
|
|
33 |
return x
|
34 |
|
35 |
|
36 |
-
def eval_caption(task, generator, models, sample, **kwargs):
|
37 |
-
transtab = str.maketrans({key: None for key in string.punctuation})
|
38 |
-
hypos = task.inference_step(generator, models, sample)
|
39 |
-
results = []
|
40 |
-
for i, sample_id in enumerate(sample["id"].tolist()):
|
41 |
-
detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator)
|
42 |
-
results.append({"image_id": str(sample_id), "caption": detok_hypo_str.translate(transtab).strip()})
|
43 |
-
return results, None
|
44 |
-
|
45 |
-
|
46 |
-
def eval_caption_cn(task, generator, models, sample, **kwargs):
|
47 |
-
hypos = task.inference_step(generator, models, sample)
|
48 |
-
results = []
|
49 |
-
for i, sample_id in enumerate(sample["id"].tolist()):
|
50 |
-
detok_hypo_str = decode_fn(
|
51 |
-
hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator
|
52 |
-
)
|
53 |
-
results.append(
|
54 |
-
{
|
55 |
-
"image_id": str(sample_id),
|
56 |
-
"caption": detok_hypo_str.strip(),
|
57 |
-
}
|
58 |
-
)
|
59 |
-
return results, None
|
60 |
-
|
61 |
-
|
62 |
def eval_ocr(task, generator, models, sample, **kwargs):
|
63 |
gen_out = task.inference_step(generator, models, sample)
|
64 |
hyps, refs, results = [], [], []
|
@@ -88,312 +62,8 @@ def eval_ocr(task, generator, models, sample, **kwargs):
|
|
88 |
return results, acc
|
89 |
|
90 |
|
91 |
-
def eval_vqa_gen(task, generator, models, sample, **kwargs):
|
92 |
-
if kwargs['beam_search_vqa_eval']:
|
93 |
-
hypos = task.inference_step(generator, models, sample, prefix_tokens=sample['prefix_tokens'])
|
94 |
-
results = []
|
95 |
-
for i, sample_id in enumerate(sample["id"].tolist()):
|
96 |
-
prefix_len = sample['prefix_tokens'][i].ne(1).sum().item()
|
97 |
-
detok_hypo_str = decode_fn(hypos[i][0]["tokens"][prefix_len:], task.tgt_dict, task.bpe, generator)
|
98 |
-
results.append({"question_id": int(sample_id), "answer": detok_hypo_str.strip()})
|
99 |
-
scores = [ref_dict.get(result['answer'], 0) for ref_dict, result in zip(sample['ref_dict'], results)]
|
100 |
-
return results, scores
|
101 |
-
|
102 |
-
encoder_out = models[0].encoder(
|
103 |
-
sample["net_input"]["src_tokens"],
|
104 |
-
src_lengths=sample["net_input"]["src_lengths"],
|
105 |
-
patch_images=sample["net_input"]["patch_images"],
|
106 |
-
patch_masks=sample["net_input"]["patch_masks"]
|
107 |
-
)
|
108 |
-
device = sample["net_input"]["src_tokens"].device
|
109 |
-
eos_item = torch.tensor([task.src_dict.eos()])
|
110 |
-
pad = task.src_dict.pad()
|
111 |
-
valid_result = []
|
112 |
-
for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list):
|
113 |
-
valid_size = len(valid_answers)
|
114 |
-
valid_tgt_items = [
|
115 |
-
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item])
|
116 |
-
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
|
117 |
-
]
|
118 |
-
valid_prev_items = [
|
119 |
-
torch.cat([torch.tensor(decoder_prompt), valid_answer])
|
120 |
-
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
|
121 |
-
]
|
122 |
-
valid_constraint_mask_items = [
|
123 |
-
torch.cat(
|
124 |
-
[torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask],
|
125 |
-
dim=0
|
126 |
-
)
|
127 |
-
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks
|
128 |
-
]
|
129 |
-
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device)
|
130 |
-
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device)
|
131 |
-
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device)
|
132 |
-
|
133 |
-
new_encoder_out = {}
|
134 |
-
new_encoder_out["encoder_out"] = [
|
135 |
-
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1)
|
136 |
-
]
|
137 |
-
new_encoder_out["encoder_padding_mask"] = [
|
138 |
-
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0)
|
139 |
-
]
|
140 |
-
new_encoder_out["position_embeddings"] = [
|
141 |
-
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0)
|
142 |
-
]
|
143 |
-
|
144 |
-
decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out)
|
145 |
-
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
|
146 |
-
lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True)
|
147 |
-
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
|
148 |
-
scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0)
|
149 |
-
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0)
|
150 |
-
scores = scores.sum(1)
|
151 |
-
scores = scores.view(-1, valid_size)
|
152 |
-
valid_result.append(scores)
|
153 |
-
valid_result = torch.cat(valid_result, dim=-1)
|
154 |
-
predicts = valid_result.argmax(1).tolist()
|
155 |
-
hyps = [task.index2ans[predict_index] for predict_index in predicts]
|
156 |
-
results = [{"question_id": int(id), "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)]
|
157 |
-
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
|
158 |
-
return results, scores
|
159 |
-
|
160 |
-
|
161 |
-
def eval_refcoco(task, generator, models, sample, **kwargs):
|
162 |
-
def _calculate_ap_score(hyps, refs, thresh=0.5):
|
163 |
-
interacts = torch.cat(
|
164 |
-
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
|
165 |
-
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
|
166 |
-
dim=1
|
167 |
-
)
|
168 |
-
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1])
|
169 |
-
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
|
170 |
-
interacts_w = interacts[:, 2] - interacts[:, 0]
|
171 |
-
interacts_h = interacts[:, 3] - interacts[:, 1]
|
172 |
-
area_interacts = interacts_w * interacts_h
|
173 |
-
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
|
174 |
-
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
|
175 |
-
|
176 |
-
gen_out = task.inference_step(generator, models, sample)
|
177 |
-
hyps = []
|
178 |
-
for i in range(len(gen_out)):
|
179 |
-
hyps.append(gen_out[i][0]["tokens"][:-1] - len(task.src_dict) + task.cfg.num_bins)
|
180 |
-
hyps = torch.stack(hyps, dim=0)
|
181 |
-
hyps = hyps / (task.cfg.num_bins - 1) * task.cfg.max_image_size
|
182 |
-
hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
|
183 |
-
hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
|
184 |
-
|
185 |
-
results = [
|
186 |
-
{"uniq_id": sample_id,
|
187 |
-
"box": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]}
|
188 |
-
for i, sample_id in enumerate(sample["id"].tolist())
|
189 |
-
]
|
190 |
-
scores = _calculate_ap_score(hyps, sample['region_coords'].float())
|
191 |
-
return results, scores
|
192 |
-
|
193 |
-
|
194 |
-
def eval_snli_ve(task, generator, models, sample, **kwargs):
|
195 |
-
encoder_out = models[0].encoder(
|
196 |
-
sample["net_input"]["src_tokens"],
|
197 |
-
src_lengths=sample["net_input"]["src_lengths"],
|
198 |
-
patch_images=sample["net_input"]["patch_images"],
|
199 |
-
patch_masks=sample["net_input"]["patch_masks"]
|
200 |
-
)
|
201 |
-
device = sample["net_input"]["src_tokens"].device
|
202 |
-
eos_item = torch.tensor([task.src_dict.eos()])
|
203 |
-
pad = task.src_dict.pad()
|
204 |
-
valid_result = []
|
205 |
-
for valid_answers, valid_constraint_masks in zip(task.valid_answers_list, task.valid_constraint_masks_list):
|
206 |
-
valid_size = len(valid_answers)
|
207 |
-
valid_tgt_items = [
|
208 |
-
torch.cat([torch.tensor(decoder_prompt[1:]), valid_answer, eos_item])
|
209 |
-
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
|
210 |
-
]
|
211 |
-
valid_prev_items = [
|
212 |
-
torch.cat([torch.tensor(decoder_prompt), valid_answer])
|
213 |
-
for decoder_prompt in sample["decoder_prompts"] for valid_answer in valid_answers
|
214 |
-
]
|
215 |
-
valid_constraint_mask_items = [
|
216 |
-
torch.cat(
|
217 |
-
[torch.zeros(len(decoder_prompt) - 1, valid_constraint_mask.size(1)).bool(), valid_constraint_mask],
|
218 |
-
dim=0
|
219 |
-
)
|
220 |
-
for decoder_prompt in sample["decoder_prompts"] for valid_constraint_mask in valid_constraint_masks
|
221 |
-
]
|
222 |
-
valid_tgt = data_utils.collate_tokens(valid_tgt_items, pad_idx=pad).to(device)
|
223 |
-
valid_prev_output = data_utils.collate_tokens(valid_prev_items, pad_idx=pad).to(device)
|
224 |
-
valid_constraint_masks = data_utils.collate_tokens(valid_constraint_mask_items, pad_idx=pad).to(device)
|
225 |
-
|
226 |
-
new_encoder_out = {}
|
227 |
-
new_encoder_out["encoder_out"] = [
|
228 |
-
encoder_out["encoder_out"][0].repeat_interleave(valid_size, dim=1)
|
229 |
-
]
|
230 |
-
new_encoder_out["encoder_padding_mask"] = [
|
231 |
-
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_size, dim=0)
|
232 |
-
]
|
233 |
-
new_encoder_out["position_embeddings"] = [
|
234 |
-
encoder_out["position_embeddings"][0].repeat_interleave(valid_size, dim=0)
|
235 |
-
]
|
236 |
-
|
237 |
-
decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out)
|
238 |
-
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
|
239 |
-
lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True)
|
240 |
-
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
|
241 |
-
scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0)
|
242 |
-
scores = scores.masked_fill((~valid_constraint_masks).all(2), 0)
|
243 |
-
scores = scores.sum(1)
|
244 |
-
scores = scores.view(-1, valid_size)
|
245 |
-
valid_result.append(scores)
|
246 |
-
valid_result = torch.cat(valid_result, dim=-1)
|
247 |
-
predicts = valid_result.argmax(1).tolist()
|
248 |
-
hyps = [task.index2ans[predict_index] for predict_index in predicts]
|
249 |
-
results = [{"uniq_id": id, "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)]
|
250 |
-
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
|
251 |
-
return results, scores
|
252 |
-
|
253 |
-
|
254 |
-
def eval_image_gen(task, generator, models, sample, **kwargs):
|
255 |
-
hypos, _ = task.inference_image(generator, sample, models)
|
256 |
-
tokens = sample['net_input']['src_tokens'][0].view(-1).tolist()
|
257 |
-
caption = task.bpe.decode(task.tgt_dict.string([token for token in tokens if token >= 4]))[
|
258 |
-
38:].replace('/', '')
|
259 |
-
|
260 |
-
text_similarity_score, indices = task.compute_text_similarity(hypos, caption,
|
261 |
-
sample['net_input']['src_tokens'].device)
|
262 |
-
results = []
|
263 |
-
for i, indice in enumerate(indices):
|
264 |
-
results.append({"sample_id": str(sample["id"][0]), "score": text_similarity_score[i], "image": hypos[indice]})
|
265 |
-
scores = [max(text_similarity_score).item()]
|
266 |
-
sorted_hyps = [hypos[indice] for indice in indices]
|
267 |
-
# dump results
|
268 |
-
if task.cfg.gen_images_path:
|
269 |
-
caption_tokens = sample['net_input']['src_tokens'][0].view(-1).tolist()
|
270 |
-
caption = task.bpe.decode(task.tgt_dict.string([token for token in caption_tokens if token >= 4]))[
|
271 |
-
38:].replace('/', '')
|
272 |
-
task.dump_images(sorted_hyps, text=caption, path=os.path.join(task.cfg.gen_images_path, 'all_results'))
|
273 |
-
task.dump_images(sorted_hyps, text=caption, path=os.path.join(task.cfg.gen_images_path, 'top1'), topk=1)
|
274 |
-
|
275 |
-
return results, scores
|
276 |
-
|
277 |
-
|
278 |
-
def eval_glue(task, generator, models, sample, **kwargs):
|
279 |
-
net_output = models[0](**sample["net_input"])
|
280 |
-
net_output[0].masked_fill_(~sample["constraint_masks"], -math.inf)
|
281 |
-
last_token_ids = sample["net_input"]["prev_output_tokens"].ne(task.src_dict.pad()).sum(1, keepdim=True) - 1
|
282 |
-
logits = net_output[0].gather(1, last_token_ids.unsqueeze(2).expand(-1, -1, net_output[0].size(2)))
|
283 |
-
logits = logits.squeeze(1)
|
284 |
-
predicts = logits.argmax(1).tolist()
|
285 |
-
hyps = [task.bpe.decode(task.src_dict[predict]).strip() for predict in predicts]
|
286 |
-
results = [{"hyp": hyp, "ref": ref_dict.keys()[0]} for hyp, ref_dict in zip(hyps, sample['ref_dict'])]
|
287 |
-
return results, None
|
288 |
-
|
289 |
-
|
290 |
-
def eval_gigaword(task, generator, models, sample, **kwargs):
|
291 |
-
gen_out = task.inference_step(generator, models, sample)
|
292 |
-
hyps, refs = [], []
|
293 |
-
results = []
|
294 |
-
for i in range(len(gen_out)):
|
295 |
-
hyp = decode_fn(gen_out[i][0]["tokens"], task.tgt_dict, task.bpe, generator).lower().strip()
|
296 |
-
hyp = fix_tokenization(hyp).replace('1', '#')
|
297 |
-
ref = sample['target_strs'][i]
|
298 |
-
hyps.append(hyp)
|
299 |
-
refs.append(ref)
|
300 |
-
results.append({"hyp": hyp, "ref": ref})
|
301 |
-
return results, None
|
302 |
-
|
303 |
-
|
304 |
-
def eval_image_classify(task, generator, models, sample, **kwargs):
|
305 |
-
batch_size = sample["net_input"]["src_tokens"].size(0)
|
306 |
-
encoder_out = models[0].encoder(
|
307 |
-
sample["net_input"]["src_tokens"],
|
308 |
-
src_lengths=sample["net_input"]["src_lengths"],
|
309 |
-
patch_images=sample["net_input"]["patch_images"],
|
310 |
-
patch_masks=sample["net_input"]["patch_masks"]
|
311 |
-
)
|
312 |
-
device = sample["net_input"]["src_tokens"].device
|
313 |
-
valid_result = []
|
314 |
-
for valid_tgt, valid_prev_output, valid_constraint_masks in zip(task.valid_tgt_list,
|
315 |
-
task.valid_prev_output_list,
|
316 |
-
task.valid_constraint_masks_list):
|
317 |
-
valid_tgt_size = valid_tgt.size(0)
|
318 |
-
valid_tgt = valid_tgt.repeat(batch_size, 1).to(device)
|
319 |
-
valid_prev_output = valid_prev_output.repeat(batch_size, 1).to(device)
|
320 |
-
valid_constraint_masks = valid_constraint_masks.repeat(batch_size, 1, 1).to(device)
|
321 |
-
new_encoder_out = {}
|
322 |
-
new_encoder_out["encoder_out"] = [
|
323 |
-
encoder_out["encoder_out"][0].repeat_interleave(valid_tgt_size, dim=1)
|
324 |
-
]
|
325 |
-
new_encoder_out["encoder_padding_mask"] = [
|
326 |
-
encoder_out["encoder_padding_mask"][0].repeat_interleave(valid_tgt_size, dim=0)
|
327 |
-
]
|
328 |
-
new_encoder_out["position_embeddings"] = [
|
329 |
-
encoder_out["position_embeddings"][0].repeat_interleave(valid_tgt_size, dim=0)
|
330 |
-
]
|
331 |
-
|
332 |
-
decoder_out = models[0].decoder(valid_prev_output, encoder_out=new_encoder_out)
|
333 |
-
decoder_out[0].masked_fill_(~valid_constraint_masks, -math.inf)
|
334 |
-
lprobs = models[0].get_normalized_probs(decoder_out, log_probs=True)
|
335 |
-
scores = lprobs.gather(dim=-1, index=valid_tgt.unsqueeze(-1)).squeeze(-1)
|
336 |
-
scores = scores.masked_fill(valid_tgt.eq(task.tgt_dict.pad()), 0)
|
337 |
-
scores = scores.sum(1)
|
338 |
-
scores = scores.view(-1, valid_tgt_size)
|
339 |
-
valid_result.append(scores)
|
340 |
-
valid_result = torch.cat(valid_result, dim=-1)
|
341 |
-
predicts = valid_result.argmax(1).tolist()
|
342 |
-
hyps = [task.index2ans[predict_index] for predict_index in predicts]
|
343 |
-
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
|
344 |
-
results = [{"uniq_id": id, "answer": hyp} for id, hyp in zip(sample["id"].tolist(), hyps)]
|
345 |
-
return results, scores
|
346 |
-
|
347 |
-
|
348 |
def eval_step(task, generator, models, sample, **kwargs):
|
349 |
-
if task.cfg._name ==
|
350 |
-
return eval_caption(task, generator, models, sample, **kwargs)
|
351 |
-
elif task.cfg._name == "caption_cn":
|
352 |
-
return eval_caption_cn(task, generator, models, sample, **kwargs)
|
353 |
-
elif task.cfg._name == "ocr":
|
354 |
return eval_ocr(task, generator, models, sample, **kwargs)
|
355 |
-
elif task.cfg._name == 'vqa_gen':
|
356 |
-
return eval_vqa_gen(task, generator, models, sample, **kwargs)
|
357 |
-
elif task.cfg._name == 'refcoco':
|
358 |
-
return eval_refcoco(task, generator, models, sample, **kwargs)
|
359 |
-
elif task.cfg._name == 'snli_ve':
|
360 |
-
return eval_snli_ve(task, generator, models, sample, **kwargs)
|
361 |
-
elif task.cfg._name == 'image_gen':
|
362 |
-
return eval_image_gen(task, generator, models, sample, **kwargs)
|
363 |
-
elif task.cfg._name in {'cola', 'mnli', 'mrpc', 'qnli', 'qqp', 'rte', 'sst2'}:
|
364 |
-
return eval_glue(task, generator, models, sample, **kwargs)
|
365 |
-
elif task.cfg._name == 'gigaword':
|
366 |
-
return eval_gigaword(task, generator, models, sample, **kwargs)
|
367 |
-
elif task.cfg._name == 'image_classify':
|
368 |
-
return eval_image_classify(task, generator, models, sample, **kwargs)
|
369 |
else:
|
370 |
raise NotImplementedError
|
371 |
-
|
372 |
-
|
373 |
-
def merge_results(task, cfg, logger, score_cnt, score_sum, results):
|
374 |
-
if task.cfg._name == 'image_gen':
|
375 |
-
if cfg.distributed_training.distributed_world_size > 1:
|
376 |
-
dist.all_reduce(score_sum.data)
|
377 |
-
dist.all_reduce(score_cnt.data)
|
378 |
-
if score_cnt.item() > 0:
|
379 |
-
logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
|
380 |
-
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
|
381 |
-
))
|
382 |
-
else:
|
383 |
-
gather_results = None
|
384 |
-
if cfg.distributed_training.distributed_world_size > 1:
|
385 |
-
gather_results = [None for _ in range(dist.get_world_size())]
|
386 |
-
dist.all_gather_object(gather_results, results)
|
387 |
-
dist.all_reduce(score_sum.data)
|
388 |
-
dist.all_reduce(score_cnt.data)
|
389 |
-
if score_cnt.item() > 0:
|
390 |
-
logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
|
391 |
-
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
|
392 |
-
))
|
393 |
-
|
394 |
-
if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0:
|
395 |
-
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
|
396 |
-
output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset))
|
397 |
-
gather_results = list(chain(*gather_results)) if gather_results is not None else results
|
398 |
-
with open(output_path, 'w') as fw:
|
399 |
-
json.dump(gather_results, fw)
|
|
|
33 |
return x
|
34 |
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def eval_ocr(task, generator, models, sample, **kwargs):
|
37 |
gen_out = task.inference_step(generator, models, sample)
|
38 |
hyps, refs, results = [], [], []
|
|
|
62 |
return results, acc
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def eval_step(task, generator, models, sample, **kwargs):
|
66 |
+
if task.cfg._name == "ocr":
|
|
|
|
|
|
|
|
|
67 |
return eval_ocr(task, generator, models, sample, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
else:
|
69 |
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|