Spaces:
Runtime error
Runtime error
File size: 15,831 Bytes
10b0761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""
import ast
import logging
import math
import os
import sys
from argparse import Namespace
from itertools import chain
import numpy as np
import torch
from fairseq import checkpoint_utils, options, scoring, tasks, utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter, TimeMeter
from omegaconf import DictConfig
def main(cfg: DictConfig):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
assert cfg.common_eval.path is not None, "--path required for generation!"
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
assert (
cfg.generation.replace_unk is None or cfg.dataset.dataset_impl == "raw"
), "--replace-unk requires a raw text dataset (--dataset-impl=raw)"
if cfg.common_eval.results_path is not None:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
output_path = os.path.join(
cfg.common_eval.results_path,
"generate-{}.txt".format(cfg.dataset.gen_subset),
)
with open(output_path, "w", buffering=1, encoding="utf-8") as h:
return _main(cfg, h)
else:
return _main(cfg, sys.stdout)
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.eos}
def _main(cfg: DictConfig, output_file):
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=output_file,
)
logger = logging.getLogger("fairseq_cli.generate")
utils.import_user_module(cfg.common)
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.max_tokens = 12000
logger.info(cfg)
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
# Load dataset splits
task = tasks.setup_task(cfg.task)
# Set dictionaries
try:
src_dict = getattr(task, "source_dictionary", None)
except NotImplementedError:
src_dict = None
tgt_dict = task.target_dictionary
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
# Load ensemble
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
if cfg.generation.lm_path is not None:
overrides["data"] = cfg.task.data
try:
lms, _ = checkpoint_utils.load_model_ensemble(
[cfg.generation.lm_path], arg_overrides=overrides, task=None
)
except:
logger.warning(
f"Failed to load language model! Please make sure that the language model dict is the same "
f"as target dict and is located in the data dir ({cfg.task.data})"
)
raise
assert len(lms) == 1
else:
lms = [None]
# Optimize ensemble for generation
for model in chain(models, lms):
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(cfg.generation.replace_unk)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(cfg.dataset.gen_subset),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
task.max_positions(), *[m.max_positions() for m in models]
),
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
seed=cfg.common.seed,
num_shards=cfg.distributed_training.distributed_world_size,
shard_id=cfg.distributed_training.distributed_rank,
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
# Initialize generator
gen_timer = StopwatchMeter()
extra_gen_cls_kwargs = {"lm_model": lms[0], "lm_weight": cfg.generation.lm_weight}
generator = task.build_generator(
models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
# Handle tokenization and BPE
tokenizer = task.build_tokenizer(cfg.tokenizer)
bpe = task.build_bpe(cfg.bpe)
def decode_fn(x):
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
scorer = scoring.build_scorer(cfg.scoring, tgt_dict)
num_sentences = 0
has_target = True
wps_meter = TimeMeter()
for sample in progress:
sample = utils.move_to_cuda(sample) if use_cuda else sample
if "net_input" not in sample:
continue
prefix_tokens = None
if cfg.generation.prefix_size > 0:
prefix_tokens = sample["target"][:, : cfg.generation.prefix_size]
constraints = None
if "constraints" in sample:
constraints = sample["constraints"]
gen_timer.start()
hypos = task.inference_step(
generator,
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
)
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
gen_timer.stop(num_generated_tokens)
for i, sample_id in enumerate(sample["id"].tolist()):
has_target = sample["target"] is not None
# Remove padding
if "src_tokens" in sample["net_input"]:
src_tokens = utils.strip_pad(
sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
)
else:
src_tokens = None
target_tokens = None
if has_target:
target_tokens = (
utils.strip_pad(sample["target"][i, :], tgt_dict.pad()).int().cpu()
)
# Either retrieve the original sentences or regenerate them from tokens.
if align_dict is not None:
src_str = task.dataset(cfg.dataset.gen_subset).src.get_original_text(
sample_id
)
target_str = task.dataset(cfg.dataset.gen_subset).tgt.get_original_text(
sample_id
)
else:
if src_dict is not None:
src_str = src_dict.string(src_tokens, cfg.common_eval.post_process)
else:
src_str = ""
if has_target:
target_str = tgt_dict.string(
target_tokens,
cfg.common_eval.post_process,
escape_unk=True,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(
generator
),
)
src_str = decode_fn(src_str)
if has_target:
target_str = decode_fn(target_str)
if not cfg.common_eval.quiet:
if src_dict is not None:
print("S-{}\t{}".format(sample_id, src_str), file=output_file)
if has_target:
print("T-{}\t{}".format(sample_id, target_str), file=output_file)
# Process top predictions
for j, hypo in enumerate(hypos[i][: cfg.generation.nbest]):
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo["tokens"].int().cpu(),
src_str=src_str,
alignment=hypo["alignment"],
align_dict=align_dict,
tgt_dict=tgt_dict,
remove_bpe=cfg.common_eval.post_process,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
)
detok_hypo_str = decode_fn(hypo_str)
if not cfg.common_eval.quiet:
score = hypo["score"] / math.log(2) # convert to base 2
# original hypothesis (after tokenization and BPE)
print(
"H-{}\t{}\t{}".format(sample_id, score, hypo_str),
file=output_file,
)
# detokenized hypothesis
print(
"D-{}\t{}\t{}".format(sample_id, score, detok_hypo_str),
file=output_file,
)
print(
"P-{}\t{}".format(
sample_id,
" ".join(
map(
lambda x: "{:.4f}".format(x),
# convert from base e to base 2
hypo["positional_scores"]
.div_(math.log(2))
.tolist(),
)
),
),
file=output_file,
)
if cfg.generation.print_alignment == "hard":
print(
"A-{}\t{}".format(
sample_id,
" ".join(
[
"{}-{}".format(src_idx, tgt_idx)
for src_idx, tgt_idx in alignment
]
),
),
file=output_file,
)
if cfg.generation.print_alignment == "soft":
print(
"A-{}\t{}".format(
sample_id,
" ".join(
[
",".join(src_probs)
for src_probs in alignment
]
),
),
file=output_file,
)
if cfg.generation.print_step:
print(
"I-{}\t{}".format(sample_id, hypo["steps"]),
file=output_file,
)
if cfg.generation.retain_iter_history:
for step, h in enumerate(hypo["history"]):
_, h_str, _ = utils.post_process_prediction(
hypo_tokens=h["tokens"].int().cpu(),
src_str=src_str,
alignment=None,
align_dict=None,
tgt_dict=tgt_dict,
remove_bpe=None,
)
print(
"E-{}_{}\t{}".format(sample_id, step, h_str),
file=output_file,
)
# Score only the top hypothesis
if has_target and j == 0:
if align_dict is not None or cfg.common_eval.post_process is not None:
# Convert back to tokens for evaluation with unk replacement and/or without BPE
target_tokens = tgt_dict.encode_line(
target_str, add_if_not_exist=True
)
hypo_tokens = tgt_dict.encode_line(
detok_hypo_str, add_if_not_exist=True
)
if hasattr(scorer, "add_string"):
scorer.add_string(target_str, detok_hypo_str)
else:
scorer.add(target_tokens, hypo_tokens)
wps_meter.update(num_generated_tokens)
progress.log({"wps": round(wps_meter.avg)})
num_sentences += (
sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
)
logger.info("NOTE: hypothesis and token scores are output in base 2")
logger.info(
"Translated {:,} sentences ({:,} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format(
num_sentences,
gen_timer.n,
gen_timer.sum,
num_sentences / gen_timer.sum,
1.0 / gen_timer.avg,
)
)
if has_target:
if cfg.bpe and not cfg.generation.sacrebleu:
if cfg.common_eval.post_process:
logger.warning(
"BLEU score is being computed by splitting detokenized string on spaces, this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization"
)
else:
logger.warning(
"If you are using BPE on the target side, the BLEU score is computed on BPE tokens, not on proper words. Use --sacrebleu for standard 13a BLEU tokenization"
)
# use print to be consistent with other main outputs: S-, H-, T-, D- and so on
print(
"Generate {} with beam={}: {}".format(
cfg.dataset.gen_subset, cfg.generation.beam, scorer.result_string()
),
file=output_file,
)
return scorer
def cli_main():
parser = options.get_generation_parser()
# TODO: replace this workaround with refactoring of `AudioPretraining`
parser.add_argument(
'--arch', '-a', metavar='ARCH', default="wav2vec2",
help='Model architecture. For constructing tasks that rely on '
'model args (e.g. `AudioPretraining`)'
)
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == "__main__":
cli_main()
|