Spaces:
Runtime error
Runtime error
File size: 5,412 Bytes
ce922b3 ce70989 ce922b3 f659f8d ce922b3 9ff4f10 ce922b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
os.system('git clone https://github.com/pytorch/fairseq.git; cd fairseq;'
'pip install --use-feature=in-tree-build ./; cd ..')
os.system('ls -l')
import torch
import numpy as np
from fairseq import utils, tasks
from fairseq import checkpoint_utils
from utils.eval_utils import eval_step
from tasks.mm_tasks.refcoco import RefcocoTask
from models.ofa import OFAModel
from PIL import Image
from torchvision import transforms
import cv2
import gradio as gr
# Register refcoco task
tasks.register_task('refcoco', RefcocoTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = False
os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/refcocog_large_best.pt; '
'mkdir -p checkpoints; mv refcocog_large_best.pt checkpoints/refcocog.pt')
# Load pretrained ckpt & config
overrides = {"bpe_dir": "utils/BPE", "eval_cider": False, "beam": 5,
"max_len_b": 16, "no_repeat_ngram_size": 3, "seed": 7}
models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths('checkpoints/refcocog.pt'),
arg_overrides=overrides
)
cfg.common.seed = 7
cfg.generation.beam = 5
cfg.generation.min_len = 4
cfg.generation.max_len_a = 0
cfg.generation.max_len_b = 4
cfg.generation.no_repeat_ngram_size = 3
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
# Move models to GPU
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Initialize generator
generator = task.build_generator(models, cfg.generation)
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
# Text preprocess
bos_item = torch.LongTensor([task.src_dict.bos()])
eos_item = torch.LongTensor([task.src_dict.eos()])
pad_idx = task.src_dict.pad()
def encode_text(text, length=None, append_bos=False, append_eos=False):
s = task.tgt_dict.encode_line(
line=task.bpe.encode(text),
add_if_not_exist=False,
append_eos=False
).long()
if length is not None:
s = s[:length]
if append_bos:
s = torch.cat([bos_item, s])
if append_eos:
s = torch.cat([s, eos_item])
return s
patch_image_size = cfg.task.patch_image_size
def construct_sample(image: Image, text: str):
w, h = image.size
w_resize_ratio = torch.tensor(patch_image_size / w).unsqueeze(0)
h_resize_ratio = torch.tensor(patch_image_size / h).unsqueeze(0)
patch_image = patch_resize_transform(image).unsqueeze(0)
patch_mask = torch.tensor([True])
src_text = encode_text(' which region does the text " {} " describe?'.format(text), append_bos=True,
append_eos=True).unsqueeze(0)
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
sample = {
"id": np.array(['42']),
"net_input": {
"src_tokens": src_text,
"src_lengths": src_length,
"patch_images": patch_image,
"patch_masks": patch_mask,
},
"w_resize_ratios": w_resize_ratio,
"h_resize_ratios": h_resize_ratio,
"region_coords": torch.randn(1, 4)
}
return sample
# Function to turn FP32 to FP16
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
# Function for visual grounding
def visual_grounding(Image, Text):
sample = construct_sample(Image, Text.lower())
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
with torch.no_grad():
result, scores = eval_step(task, generator, models, sample)
img = np.asarray(Image)
cv2.rectangle(
img,
(int(result[0]["box"][0]), int(result[0]["box"][1])),
(int(result[0]["box"][2]), int(result[0]["box"][3])),
(0, 255, 0),
3
)
return img
title = "OFA-Visual_Grounding"
description = "Gradio Demo for OFA-Visual_Grounding. Upload your own image or click any one of the examples, " \
"and write a description about a certain object. " \
"Then click \"Submit\" and wait for the result of grounding. "
article = "<p style='text-align: center'><a href='https://github.com/OFA-Sys/OFA' target='_blank'>OFA Github " \
"Repo</a></p> "
examples = [['pokemons.jpg', 'a blue turtle-like pokemon with round head'],
['one_piece.jpeg', 'a man in a straw hat and a red dress'],
['flowers.jpg', 'a white vase and pink flowers']]
io = gr.Interface(fn=visual_grounding, inputs=[gr.inputs.Image(type='pil'), "textbox"],
outputs=gr.outputs.Image(type='numpy'),
title=title, description=description, article=article, examples=examples,
allow_flagging=False, allow_screenshot=False)
io.launch(enable_queue=True, cache_examples=True)
|