Spaces:
Runtime error
Runtime error
File size: 7,219 Bytes
10b0761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import matplotlib.pyplot as plt
import numpy as np
from pathlib import Path
import soundfile as sf
import sys
import torch
import torchaudio
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.logging import progress_bar
from fairseq.tasks.text_to_speech import plot_tts_output
from fairseq.data.audio.text_to_speech_dataset import TextToSpeechDataset
logging.basicConfig()
logging.root.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def make_parser():
parser = options.get_speech_generation_parser()
parser.add_argument("--dump-features", action="store_true")
parser.add_argument("--dump-waveforms", action="store_true")
parser.add_argument("--dump-attentions", action="store_true")
parser.add_argument("--dump-eos-probs", action="store_true")
parser.add_argument("--dump-plots", action="store_true")
parser.add_argument("--dump-target", action="store_true")
parser.add_argument("--output-sample-rate", default=22050, type=int)
parser.add_argument("--teacher-forcing", action="store_true")
parser.add_argument(
"--audio-format", type=str, default="wav", choices=["wav", "flac"]
)
return parser
def postprocess_results(
dataset: TextToSpeechDataset, sample, hypos, resample_fn, dump_target
):
def to_np(x):
return None if x is None else x.detach().cpu().numpy()
sample_ids = [dataset.ids[i] for i in sample["id"].tolist()]
texts = sample["src_texts"]
attns = [to_np(hypo["attn"]) for hypo in hypos]
eos_probs = [to_np(hypo.get("eos_prob", None)) for hypo in hypos]
feat_preds = [to_np(hypo["feature"]) for hypo in hypos]
wave_preds = [to_np(resample_fn(h["waveform"])) for h in hypos]
if dump_target:
feat_targs = [to_np(hypo["targ_feature"]) for hypo in hypos]
wave_targs = [to_np(resample_fn(h["targ_waveform"])) for h in hypos]
else:
feat_targs = [None for _ in hypos]
wave_targs = [None for _ in hypos]
return zip(sample_ids, texts, attns, eos_probs, feat_preds, wave_preds,
feat_targs, wave_targs)
def dump_result(
is_na_model,
args,
vocoder,
sample_id,
text,
attn,
eos_prob,
feat_pred,
wave_pred,
feat_targ,
wave_targ,
):
sample_rate = args.output_sample_rate
out_root = Path(args.results_path)
if args.dump_features:
feat_dir = out_root / "feat"
feat_dir.mkdir(exist_ok=True, parents=True)
np.save(feat_dir / f"{sample_id}.npy", feat_pred)
if args.dump_target:
feat_tgt_dir = out_root / "feat_tgt"
feat_tgt_dir.mkdir(exist_ok=True, parents=True)
np.save(feat_tgt_dir / f"{sample_id}.npy", feat_targ)
if args.dump_attentions:
attn_dir = out_root / "attn"
attn_dir.mkdir(exist_ok=True, parents=True)
np.save(attn_dir / f"{sample_id}.npy", attn.numpy())
if args.dump_eos_probs and not is_na_model:
eos_dir = out_root / "eos"
eos_dir.mkdir(exist_ok=True, parents=True)
np.save(eos_dir / f"{sample_id}.npy", eos_prob)
if args.dump_plots:
images = [feat_pred.T] if is_na_model else [feat_pred.T, attn]
names = ["output"] if is_na_model else ["output", "alignment"]
if feat_targ is not None:
images = [feat_targ.T] + images
names = [f"target (idx={sample_id})"] + names
if is_na_model:
plot_tts_output(images, names, attn, "alignment", suptitle=text)
else:
plot_tts_output(images, names, eos_prob, "eos prob", suptitle=text)
plot_dir = out_root / "plot"
plot_dir.mkdir(exist_ok=True, parents=True)
plt.savefig(plot_dir / f"{sample_id}.png")
plt.close()
if args.dump_waveforms:
ext = args.audio_format
if wave_pred is not None:
wav_dir = out_root / f"{ext}_{sample_rate}hz_{vocoder}"
wav_dir.mkdir(exist_ok=True, parents=True)
sf.write(wav_dir / f"{sample_id}.{ext}", wave_pred, sample_rate)
if args.dump_target and wave_targ is not None:
wav_tgt_dir = out_root / f"{ext}_{sample_rate}hz_{vocoder}_tgt"
wav_tgt_dir.mkdir(exist_ok=True, parents=True)
sf.write(wav_tgt_dir / f"{sample_id}.{ext}", wave_targ, sample_rate)
def main(args):
assert(args.dump_features or args.dump_waveforms or args.dump_attentions
or args.dump_eos_probs or args.dump_plots)
if args.max_tokens is None and args.batch_size is None:
args.max_tokens = 8000
logger.info(args)
use_cuda = torch.cuda.is_available() and not args.cpu
task = tasks.setup_task(args)
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[args.path],
task=task,
)
model = models[0].cuda() if use_cuda else models[0]
# use the original n_frames_per_step
task.args.n_frames_per_step = saved_cfg.task.n_frames_per_step
task.load_dataset(args.gen_subset, task_cfg=saved_cfg.task)
data_cfg = task.data_cfg
sample_rate = data_cfg.config.get("features", {}).get("sample_rate", 22050)
resample_fn = {
False: lambda x: x,
True: lambda x: torchaudio.sox_effects.apply_effects_tensor(
x.detach().cpu().unsqueeze(0), sample_rate,
[['rate', str(args.output_sample_rate)]]
)[0].squeeze(0)
}.get(args.output_sample_rate != sample_rate)
if args.output_sample_rate != sample_rate:
logger.info(f"resampling to {args.output_sample_rate}Hz")
generator = task.build_generator([model], args)
itr = task.get_batch_iterator(
dataset=task.dataset(args.gen_subset),
max_tokens=args.max_tokens,
max_sentences=args.batch_size,
max_positions=(sys.maxsize, sys.maxsize),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
num_shards=args.num_shards,
shard_id=args.shard_id,
num_workers=args.num_workers,
data_buffer_size=args.data_buffer_size,
).next_epoch_itr(shuffle=False)
Path(args.results_path).mkdir(exist_ok=True, parents=True)
is_na_model = getattr(model, "NON_AUTOREGRESSIVE", False)
dataset = task.dataset(args.gen_subset)
vocoder = task.args.vocoder
with progress_bar.build_progress_bar(args, itr) as t:
for sample in t:
sample = utils.move_to_cuda(sample) if use_cuda else sample
hypos = generator.generate(model, sample, has_targ=args.dump_target)
for result in postprocess_results(
dataset, sample, hypos, resample_fn, args.dump_target
):
dump_result(is_na_model, args, vocoder, *result)
def cli_main():
parser = make_parser()
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == "__main__":
cli_main()
|