File size: 3,859 Bytes
10b0761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
from librosa.filters import mel as librosa_mel_fn
from .audio_processing import dynamic_range_compression
from .audio_processing import dynamic_range_decompression
from .stft import STFT
from .utils import get_mask_from_lengths


class LinearNorm(torch.nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
        super(LinearNorm, self).__init__()
        self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)

        torch.nn.init.xavier_uniform_(
            self.linear_layer.weight,
            gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, x):
        return self.linear_layer(x)


class ConvNorm(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
                 padding=None, dilation=1, bias=True, w_init_gain='linear'):
        super(ConvNorm, self).__init__()
        if padding is None:
            assert(kernel_size % 2 == 1)
            padding = int(dilation * (kernel_size - 1) / 2)

        self.conv = torch.nn.Conv1d(in_channels, out_channels,
                                    kernel_size=kernel_size, stride=stride,
                                    padding=padding, dilation=dilation,
                                    bias=bias)

        torch.nn.init.xavier_uniform_(
            self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, signal):
        conv_signal = self.conv(signal)
        return conv_signal


class GlobalAvgPool(torch.nn.Module):
    def __init__(self):
        super(GlobalAvgPool, self).__init__()

    def forward(self, x, lengths=None):
        """Average pooling across time steps (dim=1) with optionally lengths.
        Args:
            x: torch.Tensor of shape (N, T, ...)
            lengths: None or torch.Tensor of shape (N,)
            dim: dimension to pool
        """
        if lengths is None:
            return x.mean(dim=1, keepdim=False)
        else:
            mask = get_mask_from_lengths(lengths).type(x.type()).to(x.device)
            mask_shape = list(mask.size()) + [1 for _ in range(x.ndimension()-2)]
            mask = mask.reshape(*mask_shape)
            numer = (x * mask).sum(dim=1, keepdim=False)
            denom = mask.sum(dim=1, keepdim=False)
            return numer / denom


class TacotronSTFT(torch.nn.Module):
    def __init__(self, filter_length=1024, hop_length=256, win_length=1024,
                 n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0,
                 mel_fmax=8000.0):
        super(TacotronSTFT, self).__init__()
        self.n_mel_channels = n_mel_channels
        self.sampling_rate = sampling_rate
        self.stft_fn = STFT(filter_length, hop_length, win_length)
        mel_basis = librosa_mel_fn(
            sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax)
        mel_basis = torch.from_numpy(mel_basis).float()
        self.register_buffer('mel_basis', mel_basis)

    def spectral_normalize(self, magnitudes):
        output = dynamic_range_compression(magnitudes)
        return output

    def spectral_de_normalize(self, magnitudes):
        output = dynamic_range_decompression(magnitudes)
        return output

    def mel_spectrogram(self, y):
        """Computes mel-spectrograms from a batch of waves
        PARAMS
        ------
        y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]

        RETURNS
        -------
        mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
        """
        assert(torch.min(y.data) >= -1)
        assert(torch.max(y.data) <= 1)

        magnitudes, phases = self.stft_fn.transform(y)
        magnitudes = magnitudes.data
        mel_output = torch.matmul(self.mel_basis, magnitudes)
        mel_output = self.spectral_normalize(mel_output)
        return mel_output