Spaces:
Runtime error
Runtime error
File size: 11,012 Bytes
10b0761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import os
from pathlib import Path
import shutil
from itertools import groupby
from tempfile import NamedTemporaryFile
from typing import Tuple
import numpy as np
import pandas as pd
import soundfile as sf
from examples.speech_to_text.data_utils import (
create_zip,
extract_fbank_features,
filter_manifest_df,
gen_config_yaml,
gen_vocab,
get_zip_manifest,
load_df_from_tsv,
save_df_to_tsv,
cal_gcmvn_stats,
)
import torch
from torch.utils.data import Dataset
from tqdm import tqdm
from fairseq.data.audio.audio_utils import get_waveform, convert_waveform
log = logging.getLogger(__name__)
MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]
class MUSTC(Dataset):
"""
Create a Dataset for MuST-C. Each item is a tuple of the form:
waveform, sample_rate, source utterance, target utterance, speaker_id,
utterance_id
"""
SPLITS = ["train", "dev", "tst-COMMON", "tst-HE"]
LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru"]
def __init__(self, root: str, lang: str, split: str) -> None:
assert split in self.SPLITS and lang in self.LANGUAGES
_root = Path(root) / f"en-{lang}" / "data" / split
wav_root, txt_root = _root / "wav", _root / "txt"
assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir()
# Load audio segments
try:
import yaml
except ImportError:
print("Please install PyYAML to load the MuST-C YAML files")
with open(txt_root / f"{split}.yaml") as f:
segments = yaml.load(f, Loader=yaml.BaseLoader)
# Load source and target utterances
for _lang in ["en", lang]:
with open(txt_root / f"{split}.{_lang}") as f:
utterances = [r.strip() for r in f]
assert len(segments) == len(utterances)
for i, u in enumerate(utterances):
segments[i][_lang] = u
# Gather info
self.data = []
for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]):
wav_path = wav_root / wav_filename
sample_rate = sf.info(wav_path.as_posix()).samplerate
seg_group = sorted(_seg_group, key=lambda x: x["offset"])
for i, segment in enumerate(seg_group):
offset = int(float(segment["offset"]) * sample_rate)
n_frames = int(float(segment["duration"]) * sample_rate)
_id = f"{wav_path.stem}_{i}"
self.data.append(
(
wav_path.as_posix(),
offset,
n_frames,
sample_rate,
segment["en"],
segment[lang],
segment["speaker_id"],
_id,
)
)
def __getitem__(
self, n: int
) -> Tuple[torch.Tensor, int, str, str, str, str]:
wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, \
utt_id = self.data[n]
waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset)
waveform = torch.from_numpy(waveform)
return waveform, sr, src_utt, tgt_utt, spk_id, utt_id
def __len__(self) -> int:
return len(self.data)
def process(args):
root = Path(args.data_root).absolute()
for lang in MUSTC.LANGUAGES:
cur_root = root / f"en-{lang}"
if not cur_root.is_dir():
print(f"{cur_root.as_posix()} does not exist. Skipped.")
continue
# Extract features
audio_root = cur_root / ("flac" if args.use_audio_input else "fbank80")
audio_root.mkdir(exist_ok=True)
for split in MUSTC.SPLITS:
print(f"Fetching split {split}...")
dataset = MUSTC(root.as_posix(), lang, split)
if args.use_audio_input:
print("Converting audios...")
for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
tgt_sample_rate = 16_000
_wavform, _ = convert_waveform(
waveform, sample_rate, to_mono=True,
to_sample_rate=tgt_sample_rate
)
sf.write(
(audio_root / f"{utt_id}.flac").as_posix(),
_wavform.numpy(), tgt_sample_rate
)
else:
print("Extracting log mel filter bank features...")
gcmvn_feature_list = []
if split == 'train' and args.cmvn_type == "global":
print("And estimating cepstral mean and variance stats...")
for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
features = extract_fbank_features(
waveform, sample_rate, audio_root / f"{utt_id}.npy"
)
if split == 'train' and args.cmvn_type == "global":
if len(gcmvn_feature_list) < args.gcmvn_max_num:
gcmvn_feature_list.append(features)
if split == 'train' and args.cmvn_type == "global":
# Estimate and save cmv
stats = cal_gcmvn_stats(gcmvn_feature_list)
with open(cur_root / "gcmvn.npz", "wb") as f:
np.savez(f, mean=stats["mean"], std=stats["std"])
# Pack features into ZIP
zip_path = cur_root / f"{audio_root.name}.zip"
print("ZIPing audios/features...")
create_zip(audio_root, zip_path)
print("Fetching ZIP manifest...")
audio_paths, audio_lengths = get_zip_manifest(zip_path)
# Generate TSV manifest
print("Generating manifest...")
train_text = []
for split in MUSTC.SPLITS:
is_train_split = split.startswith("train")
manifest = {c: [] for c in MANIFEST_COLUMNS}
dataset = MUSTC(args.data_root, lang, split)
for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset):
manifest["id"].append(utt_id)
manifest["audio"].append(audio_paths[utt_id])
manifest["n_frames"].append(audio_lengths[utt_id])
manifest["tgt_text"].append(
src_utt if args.task == "asr" else tgt_utt
)
manifest["speaker"].append(speaker_id)
if is_train_split:
train_text.extend(manifest["tgt_text"])
df = pd.DataFrame.from_dict(manifest)
df = filter_manifest_df(df, is_train_split=is_train_split)
save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv")
# Generate vocab
v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}"
with NamedTemporaryFile(mode="w") as f:
for t in train_text:
f.write(t + "\n")
gen_vocab(
Path(f.name),
cur_root / spm_filename_prefix,
args.vocab_type,
args.vocab_size,
)
# Generate config YAML
if args.use_audio_input:
gen_config_yaml(
cur_root,
spm_filename=spm_filename_prefix + ".model",
yaml_filename=f"config_{args.task}.yaml",
specaugment_policy=None,
extra={"use_audio_input": True}
)
else:
gen_config_yaml(
cur_root,
spm_filename=spm_filename_prefix + ".model",
yaml_filename=f"config_{args.task}.yaml",
specaugment_policy="lb",
cmvn_type=args.cmvn_type,
gcmvn_path=(
cur_root / "gcmvn.npz" if args.cmvn_type == "global"
else None
),
)
# Clean up
shutil.rmtree(audio_root)
def process_joint(args):
cur_root = Path(args.data_root)
assert all(
(cur_root / f"en-{lang}").is_dir() for lang in MUSTC.LANGUAGES
), "do not have downloaded data available for all 8 languages"
# Generate vocab
vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}"
with NamedTemporaryFile(mode="w") as f:
for lang in MUSTC.LANGUAGES:
tsv_path = cur_root / f"en-{lang}" / f"train_{args.task}.tsv"
df = load_df_from_tsv(tsv_path)
for t in df["tgt_text"]:
f.write(t + "\n")
special_symbols = None
if args.task == 'st':
special_symbols = [f'<lang:{lang}>' for lang in MUSTC.LANGUAGES]
gen_vocab(
Path(f.name),
cur_root / spm_filename_prefix,
args.vocab_type,
args.vocab_size,
special_symbols=special_symbols
)
# Generate config YAML
gen_config_yaml(
cur_root,
spm_filename=spm_filename_prefix + ".model",
yaml_filename=f"config_{args.task}.yaml",
specaugment_policy="ld",
prepend_tgt_lang_tag=(args.task == "st"),
)
# Make symbolic links to manifests
for lang in MUSTC.LANGUAGES:
for split in MUSTC.SPLITS:
src_path = cur_root / f"en-{lang}" / f"{split}_{args.task}.tsv"
desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv"
if not desc_path.is_symlink():
os.symlink(src_path, desc_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data-root", "-d", required=True, type=str)
parser.add_argument(
"--vocab-type",
default="unigram",
required=True,
type=str,
choices=["bpe", "unigram", "char"],
),
parser.add_argument("--vocab-size", default=8000, type=int)
parser.add_argument("--task", type=str, choices=["asr", "st"])
parser.add_argument("--joint", action="store_true", help="")
parser.add_argument(
"--cmvn-type", default="utterance",
choices=["global", "utterance"],
help="The type of cepstral mean and variance normalization"
)
parser.add_argument(
"--gcmvn-max-num", default=150000, type=int,
help="Maximum number of sentences to use to estimate global mean and "
"variance"
)
parser.add_argument("--use-audio-input", action="store_true")
args = parser.parse_args()
if args.joint:
process_joint(args)
else:
process(args)
if __name__ == "__main__":
main()
|