Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from dataclasses import dataclass, field | |
import json | |
import logging | |
from typing import Optional | |
from argparse import Namespace | |
from itertools import zip_longest | |
from collections import OrderedDict | |
import numpy as np | |
import sacrebleu | |
import string | |
from fairseq import metrics, utils | |
from fairseq.tasks import register_task | |
from tasks.ofa_task import OFATask, OFAConfig | |
from data.mm_data.caption_dataset import CaptionDataset | |
from data.file_dataset import FileDataset | |
from utils.cider.pyciderevalcap.ciderD.ciderD import CiderD | |
EVAL_BLEU_ORDER = 4 | |
logger = logging.getLogger(__name__) | |
class CaptionConfig(OFAConfig): | |
eval_bleu: bool = field( | |
default=False, metadata={"help": "evaluation with BLEU scores"} | |
) | |
eval_cider: bool = field( | |
default=False, metadata={"help": "evaluation with CIDEr scores"} | |
) | |
eval_args: Optional[str] = field( | |
default='{}', | |
metadata={ | |
"help": 'generation args for BLUE or CIDEr scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string' | |
}, | |
) | |
eval_print_samples: bool = field( | |
default=False, metadata={"help": "print sample generations during validation"} | |
) | |
eval_cider_cached_tokens: Optional[str] = field( | |
default=None, | |
metadata={"help": "path to cached cPickle file used to calculate CIDEr scores"}, | |
) | |
scst: bool = field( | |
default=False, metadata={"help": "Self-critical sequence training"} | |
) | |
scst_args: str = field( | |
default='{}', | |
metadata={ | |
"help": 'generation args for Self-critical sequence training, as JSON string' | |
}, | |
) | |
class CaptionTask(OFATask): | |
def __init__(self, cfg: CaptionConfig, src_dict, tgt_dict): | |
super().__init__(cfg, src_dict, tgt_dict) | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
paths = self.cfg.data.split(',') | |
assert len(paths) > 0 | |
if split == 'train': | |
file_path = paths[(epoch - 1) % (len(paths) - 1)] | |
else: | |
file_path = paths[-1] | |
dataset = FileDataset(file_path, self.cfg.selected_cols) | |
self.datasets[split] = CaptionDataset( | |
split, | |
dataset, | |
self.bpe, | |
self.src_dict, | |
self.tgt_dict, | |
max_src_length=self.cfg.max_src_length, | |
max_tgt_length=self.cfg.max_tgt_length, | |
patch_image_size=self.cfg.patch_image_size, | |
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std, | |
scst=getattr(self.cfg, 'scst', False) | |
) | |
def build_model(self, cfg): | |
model = super().build_model(cfg) | |
if self.cfg.eval_bleu or self.cfg.eval_cider: | |
gen_args = json.loads(self.cfg.eval_args) | |
self.sequence_generator = self.build_generator( | |
[model], Namespace(**gen_args) | |
) | |
if self.cfg.eval_cider: | |
self.CiderD_scorer = CiderD(df=self.cfg.eval_cider_cached_tokens) | |
if self.cfg.scst: | |
scst_args = json.loads(self.cfg.scst_args) | |
self.scst_generator = self.build_generator( | |
[model], Namespace(**scst_args) | |
) | |
return model | |
def _calculate_cider_scores(self, gen_res, gt_res): | |
''' | |
gen_res: generated captions, list of str | |
gt_idx: list of int, of the same length as gen_res | |
gt_res: ground truth captions, list of list of str. | |
gen_res[i] corresponds to gt_res[gt_idx[i]] | |
Each image can have multiple ground truth captions | |
''' | |
gen_res_size = len(gen_res) | |
res = OrderedDict() | |
for i in range(gen_res_size): | |
res[i] = [gen_res[i].strip()] | |
gts = OrderedDict() | |
gt_res_ = [ | |
[gt_res[i][j].strip() for j in range(len(gt_res[i]))] | |
for i in range(len(gt_res)) | |
] | |
for i in range(gen_res_size): | |
gts[i] = gt_res_[i] | |
res_ = [{'image_id': i, 'caption': res[i]} for i in range(len(res))] | |
_, scores = self.CiderD_scorer.compute_score(gts, res_) | |
return scores | |
def valid_step(self, sample, model, criterion): | |
loss, sample_size, logging_output = criterion(model, sample) | |
model.eval() | |
if self.cfg.eval_bleu or self.cfg.eval_cider: | |
hyps, refs = self._inference(self.sequence_generator, sample, model) | |
if self.cfg.eval_bleu: | |
if self.cfg.eval_tokenized_bleu: | |
bleu = sacrebleu.corpus_bleu(hyps, list(zip_longest(*refs)), tokenize="none") | |
else: | |
bleu = sacrebleu.corpus_bleu(hyps, list(zip_longest(*refs))) | |
logging_output["_bleu_sys_len"] = bleu.sys_len | |
logging_output["_bleu_ref_len"] = bleu.ref_len | |
# we split counts into separate entries so that they can be | |
# summed efficiently across workers using fast-stat-sync | |
assert len(bleu.counts) == EVAL_BLEU_ORDER | |
for i in range(EVAL_BLEU_ORDER): | |
logging_output["_bleu_counts_" + str(i)] = bleu.counts[i] | |
logging_output["_bleu_totals_" + str(i)] = bleu.totals[i] | |
if self.cfg.eval_cider: | |
scores = self._calculate_cider_scores(hyps, refs) | |
logging_output["_cider_score_sum"] = scores.sum() | |
logging_output["_cider_cnt"] = scores.size | |
return loss, sample_size, logging_output | |
def reduce_metrics(self, logging_outputs, criterion): | |
super().reduce_metrics(logging_outputs, criterion) | |
def sum_logs(key): | |
import torch | |
result = sum(log.get(key, 0) for log in logging_outputs) | |
if torch.is_tensor(result): | |
result = result.cpu() | |
return result | |
if self.cfg.eval_bleu: | |
counts, totals = [], [] | |
for i in range(EVAL_BLEU_ORDER): | |
counts.append(sum_logs("_bleu_counts_" + str(i))) | |
totals.append(sum_logs("_bleu_totals_" + str(i))) | |
if max(totals) > 0: | |
# log counts as numpy arrays -- log_scalar will sum them correctly | |
metrics.log_scalar("_bleu_counts", np.array(counts)) | |
metrics.log_scalar("_bleu_totals", np.array(totals)) | |
metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len")) | |
metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len")) | |
def compute_bleu(meters): | |
import inspect | |
import sacrebleu | |
fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0] | |
if "smooth_method" in fn_sig: | |
smooth = {"smooth_method": "exp"} | |
else: | |
smooth = {"smooth": "exp"} | |
bleu = sacrebleu.compute_bleu( | |
correct=meters["_bleu_counts"].sum, | |
total=meters["_bleu_totals"].sum, | |
sys_len=meters["_bleu_sys_len"].sum, | |
ref_len=meters["_bleu_ref_len"].sum, | |
**smooth | |
) | |
return round(bleu.score, 2) | |
metrics.log_derived("bleu", compute_bleu) | |
if self.cfg.eval_cider: | |
def compute_cider(meters): | |
cider = meters["_cider_score_sum"].sum / meters["_cider_cnt"].sum | |
cider = cider if isinstance(cider, float) else cider.item() | |
return round(cider, 3) | |
if sum_logs("_cider_cnt") > 0: | |
metrics.log_scalar("_cider_score_sum", sum_logs("_cider_score_sum")) | |
metrics.log_scalar("_cider_cnt", sum_logs("_cider_cnt")) | |
metrics.log_derived("cider", compute_cider) | |
def _inference(self, generator, sample, model): | |
def decode(toks, escape_unk=False): | |
s = self.tgt_dict.string( | |
toks.int().cpu(), | |
# The default unknown string in fairseq is `<unk>`, but | |
# this is tokenized by sacrebleu as `< unk >`, inflating | |
# BLEU scores. Instead, we use a somewhat more verbose | |
# alternative that is unlikely to appear in the real | |
# reference, but doesn't get split into multiple tokens. | |
unk_string=("UNKNOWNTOKENINREF" if escape_unk else "UNKNOWNTOKENINHYP"), | |
) | |
if self.bpe: | |
s = self.bpe.decode(s) | |
return s | |
gen_out = self.inference_step(generator, [model], sample) | |
hyps, refs = [], [] | |
transtab = str.maketrans({key: None for key in string.punctuation}) | |
for i in range(len(gen_out)): | |
decode_tokens = decode(gen_out[i][0]["tokens"]) | |
hyps.append(decode_tokens.translate(transtab).strip()) | |
refs.append( | |
[ | |
sent.translate(transtab).strip() | |
for sent in decode( | |
utils.strip_pad(sample["target"][i], self.tgt_dict.pad()), | |
escape_unk=True, # don't count <unk> as matches to the hypo | |
).split('&&') | |
] | |
) | |
if self.cfg.eval_print_samples: | |
logger.info("example hypothesis: " + hyps[0]) | |
logger.info("example reference: " + ' && '.join(refs[0])) | |
return hyps, refs | |