Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from dataclasses import dataclass, field | |
import json | |
import logging | |
from typing import Optional | |
from argparse import Namespace | |
import torch | |
from fairseq import metrics | |
from fairseq.tasks import register_task | |
from tasks.ofa_task import OFATask, OFAConfig | |
from data.mm_data.refcoco_dataset import RefcocoDataset | |
from data.file_dataset import FileDataset | |
logger = logging.getLogger(__name__) | |
class RefcocoConfig(OFAConfig): | |
# options for reporting BLEU during validation | |
eval_acc: bool = field( | |
default=False, metadata={"help": "evaluation with BLEU scores"} | |
) | |
eval_args: Optional[str] = field( | |
default='{}', | |
metadata={ | |
"help": 'generation args for BLUE or CIDEr scoring, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string' | |
}, | |
) | |
eval_print_samples: bool = field( | |
default=False, metadata={"help": "print sample generations during validation"} | |
) | |
max_image_size: int = field( | |
default=512, metadata={"help": "max image size for normalization"} | |
) | |
scst: bool = field( | |
default=False, metadata={"help": "Self-critical sequence training"} | |
) | |
scst_args: str = field( | |
default='{}', | |
metadata={ | |
"help": 'generation args for Self-critical sequence training, as JSON string' | |
}, | |
) | |
class RefcocoTask(OFATask): | |
def __init__(self, cfg: RefcocoConfig, src_dict, tgt_dict): | |
super().__init__(cfg, src_dict, tgt_dict) | |
def load_dataset(self, split, epoch=1, combine=False, **kwargs): | |
paths = self.cfg.data.split(',') | |
assert len(paths) > 0 | |
if split == 'train': | |
file_path = paths[(epoch - 1) % (len(paths) - 1)] | |
else: | |
file_path = paths[-1] | |
dataset = FileDataset(file_path, self.cfg.selected_cols) | |
self.datasets[split] = RefcocoDataset( | |
split, | |
dataset, | |
self.bpe, | |
self.src_dict, | |
self.tgt_dict, | |
max_src_length=self.cfg.max_src_length, | |
max_tgt_length=self.cfg.max_tgt_length, | |
patch_image_size=self.cfg.patch_image_size, | |
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std, | |
num_bins=self.cfg.num_bins, | |
max_image_size=self.cfg.max_image_size | |
) | |
def build_model(self, cfg): | |
model = super().build_model(cfg) | |
if self.cfg.eval_acc: | |
gen_args = json.loads(self.cfg.eval_args) | |
self.sequence_generator = self.build_generator( | |
[model], Namespace(**gen_args) | |
) | |
if self.cfg.scst: | |
scst_args = json.loads(self.cfg.scst_args) | |
self.scst_generator = self.build_generator( | |
[model], Namespace(**scst_args) | |
) | |
return model | |
def _calculate_ap_score(self, hyps, refs, thresh=0.5): | |
interacts = torch.cat( | |
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]), | |
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])], | |
dim=1 | |
) | |
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) | |
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1]) | |
interacts_w = interacts[:, 2] - interacts[:, 0] | |
interacts_h = interacts[:, 3] - interacts[:, 1] | |
area_interacts = interacts_w * interacts_h | |
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6) | |
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float() | |
def valid_step(self, sample, model, criterion): | |
loss, sample_size, logging_output = criterion(model, sample) | |
model.eval() | |
if self.cfg.eval_acc: | |
hyps, refs = self._inference(self.sequence_generator, sample, model) | |
hyps = hyps / (self.cfg.num_bins - 1) * self.cfg.max_image_size | |
refs = refs / (self.cfg.num_bins - 1) * self.cfg.max_image_size | |
hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1) | |
hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1) | |
refs[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1) | |
refs[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1) | |
# scores = self._calculate_ap_score(hyps, refs) | |
scores = self._calculate_ap_score(hyps, sample['region_coords'].float()) | |
logging_output["_score_sum"] = scores.sum().item() | |
logging_output["_score_cnt"] = scores.size(0) | |
return loss, sample_size, logging_output | |
def reduce_metrics(self, logging_outputs, criterion): | |
super().reduce_metrics(logging_outputs, criterion) | |
def sum_logs(key): | |
import torch | |
result = sum(log.get(key, 0) for log in logging_outputs) | |
if torch.is_tensor(result): | |
result = result.cpu() | |
return result | |
def compute_score(meters): | |
score = meters["_score_sum"].sum / meters["_score_cnt"].sum | |
score = score if isinstance(score, float) else score.item() | |
return round(score, 4) | |
if sum_logs("_score_cnt") > 0: | |
metrics.log_scalar("_score_sum", sum_logs("_score_sum")) | |
metrics.log_scalar("_score_cnt", sum_logs("_score_cnt")) | |
metrics.log_derived("score", compute_score) | |
def _inference(self, generator, sample, model): | |
gen_out = self.inference_step(generator, [model], sample) | |
hyps, refs = [], [] | |
for i in range(len(gen_out)): | |
hyps.append(gen_out[i][0]["tokens"][:-1] - len(self.src_dict) + self.cfg.num_bins) | |
refs.append(sample["target"][i][:-1] - len(self.src_dict) + self.cfg.num_bins) | |
if self.cfg.eval_print_samples: | |
logger.info("example hypothesis: ", hyps[0]) | |
logger.info("example reference: ", refs[0]) | |
return torch.stack(hyps, dim=0), torch.stack(refs, dim=0) | |