JustinLin610
update
10b0761
raw
history blame
3.28 kB
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import glob
import numpy as np
DIM = 1024
def compute_dist(source_embs, target_embs, k=5, return_sim_mat=False):
target_ids = [tid for tid in target_embs]
source_mat = np.stack(source_embs.values(), axis=0)
normalized_source_mat = source_mat / np.linalg.norm(
source_mat, axis=1, keepdims=True
)
target_mat = np.stack(target_embs.values(), axis=0)
normalized_target_mat = target_mat / np.linalg.norm(
target_mat, axis=1, keepdims=True
)
sim_mat = normalized_source_mat.dot(normalized_target_mat.T)
if return_sim_mat:
return sim_mat
neighbors_map = {}
for i, sentence_id in enumerate(source_embs):
idx = np.argsort(sim_mat[i, :])[::-1][:k]
neighbors_map[sentence_id] = [target_ids[tid] for tid in idx]
return neighbors_map
def load_embeddings(directory, LANGS):
sentence_embeddings = {}
sentence_texts = {}
for lang in LANGS:
sentence_embeddings[lang] = {}
sentence_texts[lang] = {}
lang_dir = f"{directory}/{lang}"
embedding_files = glob.glob(f"{lang_dir}/all_avg_pool.{lang}.*")
for embed_file in embedding_files:
shard_id = embed_file.split(".")[-1]
embeddings = np.fromfile(embed_file, dtype=np.float32)
num_rows = embeddings.shape[0] // DIM
embeddings = embeddings.reshape((num_rows, DIM))
with open(f"{lang_dir}/sentences.{lang}.{shard_id}") as sentence_file:
for idx, line in enumerate(sentence_file):
sentence_id, sentence = line.strip().split("\t")
sentence_texts[lang][sentence_id] = sentence
sentence_embeddings[lang][sentence_id] = embeddings[idx, :]
return sentence_embeddings, sentence_texts
def compute_accuracy(directory, LANGS):
sentence_embeddings, sentence_texts = load_embeddings(directory, LANGS)
top_1_accuracy = {}
top1_str = " ".join(LANGS) + "\n"
for source_lang in LANGS:
top_1_accuracy[source_lang] = {}
top1_str += f"{source_lang} "
for target_lang in LANGS:
top1 = 0
top5 = 0
neighbors_map = compute_dist(
sentence_embeddings[source_lang], sentence_embeddings[target_lang]
)
for sentence_id, neighbors in neighbors_map.items():
if sentence_id == neighbors[0]:
top1 += 1
if sentence_id in neighbors[:5]:
top5 += 1
n = len(sentence_embeddings[target_lang])
top1_str += f"{top1/n} "
top1_str += "\n"
print(top1_str)
print(top1_str, file=open(f"{directory}/accuracy", "w"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Analyze encoder outputs")
parser.add_argument("directory", help="Source language corpus")
parser.add_argument("--langs", help="List of langs")
args = parser.parse_args()
langs = args.langs.split(",")
compute_accuracy(args.directory, langs)