Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from fairseq import options, utils | |
from fairseq.models import ( | |
FairseqEncoder, | |
FairseqIncrementalDecoder, | |
FairseqEncoderDecoderModel, | |
register_model, | |
register_model_architecture, | |
) | |
class LSTMModel(FairseqEncoderDecoderModel): | |
def __init__(self, encoder, decoder): | |
super().__init__(encoder, decoder) | |
def forward( | |
self, | |
src_tokens, | |
src_lengths, | |
prev_output_tokens=None, | |
tgt_tokens=None, | |
tgt_lengths=None, | |
target_language_id=None, | |
dataset_name="", | |
): | |
assert target_language_id is not None | |
src_encoder_out = self.encoder(src_tokens, src_lengths, dataset_name) | |
return self.decoder( | |
prev_output_tokens, src_encoder_out, lang_id=target_language_id | |
) | |
def add_args(parser): | |
"""Add model-specific arguments to the parser.""" | |
parser.add_argument( | |
"--dropout", | |
default=0.1, | |
type=float, | |
metavar="D", | |
help="dropout probability", | |
) | |
parser.add_argument( | |
"--encoder-embed-dim", | |
type=int, | |
metavar="N", | |
help="encoder embedding dimension", | |
) | |
parser.add_argument( | |
"--encoder-embed-path", | |
default=None, | |
type=str, | |
metavar="STR", | |
help="path to pre-trained encoder embedding", | |
) | |
parser.add_argument( | |
"--encoder-hidden-size", type=int, metavar="N", help="encoder hidden size" | |
) | |
parser.add_argument( | |
"--encoder-layers", type=int, metavar="N", help="number of encoder layers" | |
) | |
parser.add_argument( | |
"--encoder-bidirectional", | |
action="store_true", | |
help="make all layers of encoder bidirectional", | |
) | |
parser.add_argument( | |
"--decoder-embed-dim", | |
type=int, | |
metavar="N", | |
help="decoder embedding dimension", | |
) | |
parser.add_argument( | |
"--decoder-embed-path", | |
default=None, | |
type=str, | |
metavar="STR", | |
help="path to pre-trained decoder embedding", | |
) | |
parser.add_argument( | |
"--decoder-hidden-size", type=int, metavar="N", help="decoder hidden size" | |
) | |
parser.add_argument( | |
"--decoder-layers", type=int, metavar="N", help="number of decoder layers" | |
) | |
parser.add_argument( | |
"--decoder-out-embed-dim", | |
type=int, | |
metavar="N", | |
help="decoder output embedding dimension", | |
) | |
parser.add_argument( | |
"--decoder-zero-init", | |
type=str, | |
metavar="BOOL", | |
help="initialize the decoder hidden/cell state to zero", | |
) | |
parser.add_argument( | |
"--decoder-lang-embed-dim", | |
type=int, | |
metavar="N", | |
help="decoder language embedding dimension", | |
) | |
parser.add_argument( | |
"--fixed-embeddings", | |
action="store_true", | |
help="keep embeddings fixed (ENCODER ONLY)", | |
) # TODO Also apply to decoder embeddings? | |
# Granular dropout settings (if not specified these default to --dropout) | |
parser.add_argument( | |
"--encoder-dropout-in", | |
type=float, | |
metavar="D", | |
help="dropout probability for encoder input embedding", | |
) | |
parser.add_argument( | |
"--encoder-dropout-out", | |
type=float, | |
metavar="D", | |
help="dropout probability for encoder output", | |
) | |
parser.add_argument( | |
"--decoder-dropout-in", | |
type=float, | |
metavar="D", | |
help="dropout probability for decoder input embedding", | |
) | |
parser.add_argument( | |
"--decoder-dropout-out", | |
type=float, | |
metavar="D", | |
help="dropout probability for decoder output", | |
) | |
def build_model(cls, args, task): | |
"""Build a new model instance.""" | |
# make sure that all args are properly defaulted (in case there are any new ones) | |
base_architecture(args) | |
def load_pretrained_embedding_from_file(embed_path, dictionary, embed_dim): | |
num_embeddings = len(dictionary) | |
padding_idx = dictionary.pad() | |
embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) | |
embed_dict = utils.parse_embedding(embed_path) | |
utils.print_embed_overlap(embed_dict, dictionary) | |
return utils.load_embedding(embed_dict, dictionary, embed_tokens) | |
pretrained_encoder_embed = None | |
if args.encoder_embed_path: | |
pretrained_encoder_embed = load_pretrained_embedding_from_file( | |
args.encoder_embed_path, task.source_dictionary, args.encoder_embed_dim | |
) | |
pretrained_decoder_embed = None | |
if args.decoder_embed_path: | |
pretrained_decoder_embed = load_pretrained_embedding_from_file( | |
args.decoder_embed_path, task.target_dictionary, args.decoder_embed_dim | |
) | |
num_langs = task.num_tasks if hasattr(task, "num_tasks") else 0 | |
encoder = LSTMEncoder( | |
dictionary=task.source_dictionary, | |
embed_dim=args.encoder_embed_dim, | |
hidden_size=args.encoder_hidden_size, | |
num_layers=args.encoder_layers, | |
dropout_in=args.encoder_dropout_in, | |
dropout_out=args.encoder_dropout_out, | |
bidirectional=args.encoder_bidirectional, | |
pretrained_embed=pretrained_encoder_embed, | |
fixed_embeddings=args.fixed_embeddings, | |
) | |
decoder = LSTMDecoder( | |
dictionary=task.target_dictionary, | |
embed_dim=args.decoder_embed_dim, | |
hidden_size=args.decoder_hidden_size, | |
out_embed_dim=args.decoder_out_embed_dim, | |
num_layers=args.decoder_layers, | |
dropout_in=args.decoder_dropout_in, | |
dropout_out=args.decoder_dropout_out, | |
zero_init=options.eval_bool(args.decoder_zero_init), | |
encoder_embed_dim=args.encoder_embed_dim, | |
encoder_output_units=encoder.output_units, | |
pretrained_embed=pretrained_decoder_embed, | |
num_langs=num_langs, | |
lang_embed_dim=args.decoder_lang_embed_dim, | |
) | |
return cls(encoder, decoder) | |
class LSTMEncoder(FairseqEncoder): | |
"""LSTM encoder.""" | |
def __init__( | |
self, | |
dictionary, | |
embed_dim=512, | |
hidden_size=512, | |
num_layers=1, | |
dropout_in=0.1, | |
dropout_out=0.1, | |
bidirectional=False, | |
left_pad=True, | |
pretrained_embed=None, | |
padding_value=0.0, | |
fixed_embeddings=False, | |
): | |
super().__init__(dictionary) | |
self.num_layers = num_layers | |
self.dropout_in = dropout_in | |
self.dropout_out = dropout_out | |
self.bidirectional = bidirectional | |
self.hidden_size = hidden_size | |
num_embeddings = len(dictionary) | |
self.padding_idx = dictionary.pad() | |
if pretrained_embed is None: | |
self.embed_tokens = Embedding(num_embeddings, embed_dim, self.padding_idx) | |
else: | |
self.embed_tokens = pretrained_embed | |
if fixed_embeddings: | |
self.embed_tokens.weight.requires_grad = False | |
self.lstm = LSTM( | |
input_size=embed_dim, | |
hidden_size=hidden_size, | |
num_layers=num_layers, | |
dropout=self.dropout_out if num_layers > 1 else 0.0, | |
bidirectional=bidirectional, | |
) | |
self.left_pad = left_pad | |
self.padding_value = padding_value | |
self.output_units = hidden_size | |
if bidirectional: | |
self.output_units *= 2 | |
def forward(self, src_tokens, src_lengths, dataset_name): | |
if self.left_pad: | |
# convert left-padding to right-padding | |
src_tokens = utils.convert_padding_direction( | |
src_tokens, | |
self.padding_idx, | |
left_to_right=True, | |
) | |
bsz, seqlen = src_tokens.size() | |
# embed tokens | |
x = self.embed_tokens(src_tokens) | |
x = F.dropout(x, p=self.dropout_in, training=self.training) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
# pack embedded source tokens into a PackedSequence | |
try: | |
packed_x = nn.utils.rnn.pack_padded_sequence(x, src_lengths.data.tolist()) | |
except BaseException: | |
raise Exception(f"Packing failed in dataset {dataset_name}") | |
# apply LSTM | |
if self.bidirectional: | |
state_size = 2 * self.num_layers, bsz, self.hidden_size | |
else: | |
state_size = self.num_layers, bsz, self.hidden_size | |
h0 = x.data.new(*state_size).zero_() | |
c0 = x.data.new(*state_size).zero_() | |
packed_outs, (final_hiddens, final_cells) = self.lstm(packed_x, (h0, c0)) | |
# unpack outputs and apply dropout | |
x, _ = nn.utils.rnn.pad_packed_sequence( | |
packed_outs, padding_value=self.padding_value | |
) | |
x = F.dropout(x, p=self.dropout_out, training=self.training) | |
assert list(x.size()) == [seqlen, bsz, self.output_units] | |
if self.bidirectional: | |
def combine_bidir(outs): | |
return torch.cat( | |
[ | |
torch.cat([outs[2 * i], outs[2 * i + 1]], dim=0).view( | |
1, bsz, self.output_units | |
) | |
for i in range(self.num_layers) | |
], | |
dim=0, | |
) | |
final_hiddens = combine_bidir(final_hiddens) | |
final_cells = combine_bidir(final_cells) | |
encoder_padding_mask = src_tokens.eq(self.padding_idx).t() | |
# Set padded outputs to -inf so they are not selected by max-pooling | |
padding_mask = src_tokens.eq(self.padding_idx).t().unsqueeze(-1) | |
if padding_mask.any(): | |
x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x) | |
# Build the sentence embedding by max-pooling over the encoder outputs | |
sentemb = x.max(dim=0)[0] | |
return { | |
"sentemb": sentemb, | |
"encoder_out": (x, final_hiddens, final_cells), | |
"encoder_padding_mask": encoder_padding_mask | |
if encoder_padding_mask.any() | |
else None, | |
} | |
def reorder_encoder_out(self, encoder_out_dict, new_order): | |
encoder_out_dict["sentemb"] = encoder_out_dict["sentemb"].index_select( | |
0, new_order | |
) | |
encoder_out_dict["encoder_out"] = tuple( | |
eo.index_select(1, new_order) for eo in encoder_out_dict["encoder_out"] | |
) | |
if encoder_out_dict["encoder_padding_mask"] is not None: | |
encoder_out_dict["encoder_padding_mask"] = encoder_out_dict[ | |
"encoder_padding_mask" | |
].index_select(1, new_order) | |
return encoder_out_dict | |
def max_positions(self): | |
"""Maximum input length supported by the encoder.""" | |
return int(1e5) # an arbitrary large number | |
class LSTMDecoder(FairseqIncrementalDecoder): | |
"""LSTM decoder.""" | |
def __init__( | |
self, | |
dictionary, | |
embed_dim=512, | |
hidden_size=512, | |
out_embed_dim=512, | |
num_layers=1, | |
dropout_in=0.1, | |
dropout_out=0.1, | |
zero_init=False, | |
encoder_embed_dim=512, | |
encoder_output_units=512, | |
pretrained_embed=None, | |
num_langs=1, | |
lang_embed_dim=0, | |
): | |
super().__init__(dictionary) | |
self.dropout_in = dropout_in | |
self.dropout_out = dropout_out | |
self.hidden_size = hidden_size | |
num_embeddings = len(dictionary) | |
padding_idx = dictionary.pad() | |
if pretrained_embed is None: | |
self.embed_tokens = Embedding(num_embeddings, embed_dim, padding_idx) | |
else: | |
self.embed_tokens = pretrained_embed | |
self.layers = nn.ModuleList( | |
[ | |
LSTMCell( | |
input_size=encoder_output_units + embed_dim + lang_embed_dim | |
if layer == 0 | |
else hidden_size, | |
hidden_size=hidden_size, | |
) | |
for layer in range(num_layers) | |
] | |
) | |
if hidden_size != out_embed_dim: | |
self.additional_fc = Linear(hidden_size, out_embed_dim) | |
self.fc_out = Linear(out_embed_dim, num_embeddings, dropout=dropout_out) | |
if zero_init: | |
self.sentemb2init = None | |
else: | |
self.sentemb2init = Linear( | |
encoder_output_units, 2 * num_layers * hidden_size | |
) | |
if lang_embed_dim == 0: | |
self.embed_lang = None | |
else: | |
self.embed_lang = nn.Embedding(num_langs, lang_embed_dim) | |
nn.init.uniform_(self.embed_lang.weight, -0.1, 0.1) | |
def forward( | |
self, prev_output_tokens, encoder_out_dict, incremental_state=None, lang_id=0 | |
): | |
sentemb = encoder_out_dict["sentemb"] | |
encoder_out = encoder_out_dict["encoder_out"] | |
if incremental_state is not None: | |
prev_output_tokens = prev_output_tokens[:, -1:] | |
bsz, seqlen = prev_output_tokens.size() | |
# get outputs from encoder | |
encoder_outs, _, _ = encoder_out[:3] | |
srclen = encoder_outs.size(0) | |
# embed tokens | |
x = self.embed_tokens(prev_output_tokens) | |
x = F.dropout(x, p=self.dropout_in, training=self.training) | |
# embed language identifier | |
if self.embed_lang is not None: | |
lang_ids = prev_output_tokens.data.new_full((bsz,), lang_id) | |
langemb = self.embed_lang(lang_ids) | |
# TODO Should we dropout here??? | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
# initialize previous states (or get from cache during incremental generation) | |
cached_state = utils.get_incremental_state( | |
self, incremental_state, "cached_state" | |
) | |
if cached_state is not None: | |
prev_hiddens, prev_cells, input_feed = cached_state | |
else: | |
num_layers = len(self.layers) | |
if self.sentemb2init is None: | |
prev_hiddens = [ | |
x.data.new(bsz, self.hidden_size).zero_() for i in range(num_layers) | |
] | |
prev_cells = [ | |
x.data.new(bsz, self.hidden_size).zero_() for i in range(num_layers) | |
] | |
else: | |
init = self.sentemb2init(sentemb) | |
prev_hiddens = [ | |
init[:, (2 * i) * self.hidden_size : (2 * i + 1) * self.hidden_size] | |
for i in range(num_layers) | |
] | |
prev_cells = [ | |
init[ | |
:, | |
(2 * i + 1) * self.hidden_size : (2 * i + 2) * self.hidden_size, | |
] | |
for i in range(num_layers) | |
] | |
input_feed = x.data.new(bsz, self.hidden_size).zero_() | |
attn_scores = x.data.new(srclen, seqlen, bsz).zero_() | |
outs = [] | |
for j in range(seqlen): | |
if self.embed_lang is None: | |
input = torch.cat((x[j, :, :], sentemb), dim=1) | |
else: | |
input = torch.cat((x[j, :, :], sentemb, langemb), dim=1) | |
for i, rnn in enumerate(self.layers): | |
# recurrent cell | |
hidden, cell = rnn(input, (prev_hiddens[i], prev_cells[i])) | |
# hidden state becomes the input to the next layer | |
input = F.dropout(hidden, p=self.dropout_out, training=self.training) | |
# save state for next time step | |
prev_hiddens[i] = hidden | |
prev_cells[i] = cell | |
out = hidden | |
out = F.dropout(out, p=self.dropout_out, training=self.training) | |
# input feeding | |
input_feed = out | |
# save final output | |
outs.append(out) | |
# cache previous states (no-op except during incremental generation) | |
utils.set_incremental_state( | |
self, | |
incremental_state, | |
"cached_state", | |
(prev_hiddens, prev_cells, input_feed), | |
) | |
# collect outputs across time steps | |
x = torch.cat(outs, dim=0).view(seqlen, bsz, self.hidden_size) | |
# T x B x C -> B x T x C | |
x = x.transpose(1, 0) | |
# srclen x tgtlen x bsz -> bsz x tgtlen x srclen | |
attn_scores = attn_scores.transpose(0, 2) | |
# project back to size of vocabulary | |
if hasattr(self, "additional_fc"): | |
x = self.additional_fc(x) | |
x = F.dropout(x, p=self.dropout_out, training=self.training) | |
x = self.fc_out(x) | |
return x, attn_scores | |
def reorder_incremental_state(self, incremental_state, new_order): | |
super().reorder_incremental_state(incremental_state, new_order) | |
cached_state = utils.get_incremental_state( | |
self, incremental_state, "cached_state" | |
) | |
if cached_state is None: | |
return | |
def reorder_state(state): | |
if isinstance(state, list): | |
return [reorder_state(state_i) for state_i in state] | |
return state.index_select(0, new_order) | |
new_state = tuple(map(reorder_state, cached_state)) | |
utils.set_incremental_state(self, incremental_state, "cached_state", new_state) | |
def max_positions(self): | |
"""Maximum output length supported by the decoder.""" | |
return int(1e5) # an arbitrary large number | |
def Embedding(num_embeddings, embedding_dim, padding_idx): | |
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
nn.init.uniform_(m.weight, -0.1, 0.1) | |
nn.init.constant_(m.weight[padding_idx], 0) | |
return m | |
def LSTM(input_size, hidden_size, **kwargs): | |
m = nn.LSTM(input_size, hidden_size, **kwargs) | |
for name, param in m.named_parameters(): | |
if "weight" in name or "bias" in name: | |
param.data.uniform_(-0.1, 0.1) | |
return m | |
def LSTMCell(input_size, hidden_size, **kwargs): | |
m = nn.LSTMCell(input_size, hidden_size, **kwargs) | |
for name, param in m.named_parameters(): | |
if "weight" in name or "bias" in name: | |
param.data.uniform_(-0.1, 0.1) | |
return m | |
def Linear(in_features, out_features, bias=True, dropout=0): | |
"""Weight-normalized Linear layer (input: N x T x C)""" | |
m = nn.Linear(in_features, out_features, bias=bias) | |
m.weight.data.uniform_(-0.1, 0.1) | |
if bias: | |
m.bias.data.uniform_(-0.1, 0.1) | |
return m | |
def base_architecture(args): | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) | |
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) | |
args.encoder_hidden_size = getattr( | |
args, "encoder_hidden_size", args.encoder_embed_dim | |
) | |
args.encoder_layers = getattr(args, "encoder_layers", 1) | |
args.encoder_bidirectional = getattr(args, "encoder_bidirectional", False) | |
args.encoder_dropout_in = getattr(args, "encoder_dropout_in", args.dropout) | |
args.encoder_dropout_out = getattr(args, "encoder_dropout_out", args.dropout) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) | |
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) | |
args.decoder_hidden_size = getattr( | |
args, "decoder_hidden_size", args.decoder_embed_dim | |
) | |
args.decoder_layers = getattr(args, "decoder_layers", 1) | |
args.decoder_out_embed_dim = getattr(args, "decoder_out_embed_dim", 512) | |
args.decoder_dropout_in = getattr(args, "decoder_dropout_in", args.dropout) | |
args.decoder_dropout_out = getattr(args, "decoder_dropout_out", args.dropout) | |
args.decoder_zero_init = getattr(args, "decoder_zero_init", "0") | |
args.decoder_lang_embed_dim = getattr(args, "decoder_lang_embed_dim", 0) | |
args.fixed_embeddings = getattr(args, "fixed_embeddings", False) | |