Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Flashlight decoders. | |
""" | |
import gc | |
import itertools as it | |
import os.path as osp | |
from typing import List | |
import warnings | |
from collections import deque, namedtuple | |
import numpy as np | |
import torch | |
from examples.speech_recognition.data.replabels import unpack_replabels | |
from fairseq import tasks | |
from fairseq.utils import apply_to_sample | |
from omegaconf import open_dict | |
from fairseq.dataclass.utils import convert_namespace_to_omegaconf | |
try: | |
from flashlight.lib.text.dictionary import create_word_dict, load_words | |
from flashlight.lib.sequence.criterion import CpuViterbiPath, get_data_ptr_as_bytes | |
from flashlight.lib.text.decoder import ( | |
CriterionType, | |
LexiconDecoderOptions, | |
KenLM, | |
LM, | |
LMState, | |
SmearingMode, | |
Trie, | |
LexiconDecoder, | |
) | |
except: | |
warnings.warn( | |
"flashlight python bindings are required to use this functionality. Please install from https://github.com/facebookresearch/flashlight/tree/master/bindings/python" | |
) | |
LM = object | |
LMState = object | |
class W2lDecoder(object): | |
def __init__(self, args, tgt_dict): | |
self.tgt_dict = tgt_dict | |
self.vocab_size = len(tgt_dict) | |
self.nbest = args.nbest | |
# criterion-specific init | |
self.criterion_type = CriterionType.CTC | |
self.blank = ( | |
tgt_dict.index("<ctc_blank>") | |
if "<ctc_blank>" in tgt_dict.indices | |
else tgt_dict.bos() | |
) | |
if "<sep>" in tgt_dict.indices: | |
self.silence = tgt_dict.index("<sep>") | |
elif "|" in tgt_dict.indices: | |
self.silence = tgt_dict.index("|") | |
else: | |
self.silence = tgt_dict.eos() | |
self.asg_transitions = None | |
def generate(self, models, sample, **unused): | |
"""Generate a batch of inferences.""" | |
# model.forward normally channels prev_output_tokens into the decoder | |
# separately, but SequenceGenerator directly calls model.encoder | |
encoder_input = { | |
k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens" | |
} | |
emissions = self.get_emissions(models, encoder_input) | |
return self.decode(emissions) | |
def get_emissions(self, models, encoder_input): | |
"""Run encoder and normalize emissions""" | |
model = models[0] | |
encoder_out = model(**encoder_input) | |
if hasattr(model, "get_logits"): | |
emissions = model.get_logits(encoder_out) # no need to normalize emissions | |
else: | |
emissions = model.get_normalized_probs(encoder_out, log_probs=True) | |
return emissions.transpose(0, 1).float().cpu().contiguous() | |
def get_tokens(self, idxs): | |
"""Normalize tokens by handling CTC blank, ASG replabels, etc.""" | |
idxs = (g[0] for g in it.groupby(idxs)) | |
idxs = filter(lambda x: x != self.blank, idxs) | |
return torch.LongTensor(list(idxs)) | |
class W2lViterbiDecoder(W2lDecoder): | |
def __init__(self, args, tgt_dict): | |
super().__init__(args, tgt_dict) | |
def decode(self, emissions): | |
B, T, N = emissions.size() | |
hypos = [] | |
if self.asg_transitions is None: | |
transitions = torch.FloatTensor(N, N).zero_() | |
else: | |
transitions = torch.FloatTensor(self.asg_transitions).view(N, N) | |
viterbi_path = torch.IntTensor(B, T) | |
workspace = torch.ByteTensor(CpuViterbiPath.get_workspace_size(B, T, N)) | |
CpuViterbiPath.compute( | |
B, | |
T, | |
N, | |
get_data_ptr_as_bytes(emissions), | |
get_data_ptr_as_bytes(transitions), | |
get_data_ptr_as_bytes(viterbi_path), | |
get_data_ptr_as_bytes(workspace), | |
) | |
return [ | |
[{"tokens": self.get_tokens(viterbi_path[b].tolist()), "score": 0}] | |
for b in range(B) | |
] | |
class W2lKenLMDecoder(W2lDecoder): | |
def __init__(self, args, tgt_dict): | |
super().__init__(args, tgt_dict) | |
self.unit_lm = getattr(args, "unit_lm", False) | |
if args.lexicon: | |
self.lexicon = load_words(args.lexicon) | |
self.word_dict = create_word_dict(self.lexicon) | |
self.unk_word = self.word_dict.get_index("<unk>") | |
self.lm = KenLM(args.kenlm_model, self.word_dict) | |
self.trie = Trie(self.vocab_size, self.silence) | |
start_state = self.lm.start(False) | |
for i, (word, spellings) in enumerate(self.lexicon.items()): | |
word_idx = self.word_dict.get_index(word) | |
_, score = self.lm.score(start_state, word_idx) | |
for spelling in spellings: | |
spelling_idxs = [tgt_dict.index(token) for token in spelling] | |
assert ( | |
tgt_dict.unk() not in spelling_idxs | |
), f"{spelling} {spelling_idxs}" | |
self.trie.insert(spelling_idxs, word_idx, score) | |
self.trie.smear(SmearingMode.MAX) | |
self.decoder_opts = LexiconDecoderOptions( | |
beam_size=args.beam, | |
beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))), | |
beam_threshold=args.beam_threshold, | |
lm_weight=args.lm_weight, | |
word_score=args.word_score, | |
unk_score=args.unk_weight, | |
sil_score=args.sil_weight, | |
log_add=False, | |
criterion_type=self.criterion_type, | |
) | |
if self.asg_transitions is None: | |
N = 768 | |
# self.asg_transitions = torch.FloatTensor(N, N).zero_() | |
self.asg_transitions = [] | |
self.decoder = LexiconDecoder( | |
self.decoder_opts, | |
self.trie, | |
self.lm, | |
self.silence, | |
self.blank, | |
self.unk_word, | |
self.asg_transitions, | |
self.unit_lm, | |
) | |
else: | |
assert args.unit_lm, "lexicon free decoding can only be done with a unit language model" | |
from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions | |
d = {w: [[w]] for w in tgt_dict.symbols} | |
self.word_dict = create_word_dict(d) | |
self.lm = KenLM(args.kenlm_model, self.word_dict) | |
self.decoder_opts = LexiconFreeDecoderOptions( | |
beam_size=args.beam, | |
beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))), | |
beam_threshold=args.beam_threshold, | |
lm_weight=args.lm_weight, | |
sil_score=args.sil_weight, | |
log_add=False, | |
criterion_type=self.criterion_type, | |
) | |
self.decoder = LexiconFreeDecoder( | |
self.decoder_opts, self.lm, self.silence, self.blank, [] | |
) | |
def get_timesteps(self, token_idxs: List[int]) -> List[int]: | |
"""Returns frame numbers corresponding to every non-blank token. | |
Parameters | |
---------- | |
token_idxs : List[int] | |
IDs of decoded tokens. | |
Returns | |
------- | |
List[int] | |
Frame numbers corresponding to every non-blank token. | |
""" | |
timesteps = [] | |
for i, token_idx in enumerate(token_idxs): | |
if token_idx == self.blank: | |
continue | |
if i == 0 or token_idx != token_idxs[i-1]: | |
timesteps.append(i) | |
return timesteps | |
def decode(self, emissions): | |
B, T, N = emissions.size() | |
hypos = [] | |
for b in range(B): | |
emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0) | |
results = self.decoder.decode(emissions_ptr, T, N) | |
nbest_results = results[: self.nbest] | |
hypos.append( | |
[ | |
{ | |
"tokens": self.get_tokens(result.tokens), | |
"score": result.score, | |
"timesteps": self.get_timesteps(result.tokens), | |
"words": [ | |
self.word_dict.get_entry(x) for x in result.words if x >= 0 | |
], | |
} | |
for result in nbest_results | |
] | |
) | |
return hypos | |
FairseqLMState = namedtuple("FairseqLMState", ["prefix", "incremental_state", "probs"]) | |
class FairseqLM(LM): | |
def __init__(self, dictionary, model): | |
LM.__init__(self) | |
self.dictionary = dictionary | |
self.model = model | |
self.unk = self.dictionary.unk() | |
self.save_incremental = False # this currently does not work properly | |
self.max_cache = 20_000 | |
model.cuda() | |
model.eval() | |
model.make_generation_fast_() | |
self.states = {} | |
self.stateq = deque() | |
def start(self, start_with_nothing): | |
state = LMState() | |
prefix = torch.LongTensor([[self.dictionary.eos()]]) | |
incremental_state = {} if self.save_incremental else None | |
with torch.no_grad(): | |
res = self.model(prefix.cuda(), incremental_state=incremental_state) | |
probs = self.model.get_normalized_probs(res, log_probs=True, sample=None) | |
if incremental_state is not None: | |
incremental_state = apply_to_sample(lambda x: x.cpu(), incremental_state) | |
self.states[state] = FairseqLMState( | |
prefix.numpy(), incremental_state, probs[0, -1].cpu().numpy() | |
) | |
self.stateq.append(state) | |
return state | |
def score(self, state: LMState, token_index: int, no_cache: bool = False): | |
""" | |
Evaluate language model based on the current lm state and new word | |
Parameters: | |
----------- | |
state: current lm state | |
token_index: index of the word | |
(can be lexicon index then you should store inside LM the | |
mapping between indices of lexicon and lm, or lm index of a word) | |
Returns: | |
-------- | |
(LMState, float): pair of (new state, score for the current word) | |
""" | |
curr_state = self.states[state] | |
def trim_cache(targ_size): | |
while len(self.stateq) > targ_size: | |
rem_k = self.stateq.popleft() | |
rem_st = self.states[rem_k] | |
rem_st = FairseqLMState(rem_st.prefix, None, None) | |
self.states[rem_k] = rem_st | |
if curr_state.probs is None: | |
new_incremental_state = ( | |
curr_state.incremental_state.copy() | |
if curr_state.incremental_state is not None | |
else None | |
) | |
with torch.no_grad(): | |
if new_incremental_state is not None: | |
new_incremental_state = apply_to_sample( | |
lambda x: x.cuda(), new_incremental_state | |
) | |
elif self.save_incremental: | |
new_incremental_state = {} | |
res = self.model( | |
torch.from_numpy(curr_state.prefix).cuda(), | |
incremental_state=new_incremental_state, | |
) | |
probs = self.model.get_normalized_probs( | |
res, log_probs=True, sample=None | |
) | |
if new_incremental_state is not None: | |
new_incremental_state = apply_to_sample( | |
lambda x: x.cpu(), new_incremental_state | |
) | |
curr_state = FairseqLMState( | |
curr_state.prefix, new_incremental_state, probs[0, -1].cpu().numpy() | |
) | |
if not no_cache: | |
self.states[state] = curr_state | |
self.stateq.append(state) | |
score = curr_state.probs[token_index].item() | |
trim_cache(self.max_cache) | |
outstate = state.child(token_index) | |
if outstate not in self.states and not no_cache: | |
prefix = np.concatenate( | |
[curr_state.prefix, torch.LongTensor([[token_index]])], -1 | |
) | |
incr_state = curr_state.incremental_state | |
self.states[outstate] = FairseqLMState(prefix, incr_state, None) | |
if token_index == self.unk: | |
score = float("-inf") | |
return outstate, score | |
def finish(self, state: LMState): | |
""" | |
Evaluate eos for language model based on the current lm state | |
Returns: | |
-------- | |
(LMState, float): pair of (new state, score for the current word) | |
""" | |
return self.score(state, self.dictionary.eos()) | |
def empty_cache(self): | |
self.states = {} | |
self.stateq = deque() | |
gc.collect() | |
class W2lFairseqLMDecoder(W2lDecoder): | |
def __init__(self, args, tgt_dict): | |
super().__init__(args, tgt_dict) | |
self.unit_lm = getattr(args, "unit_lm", False) | |
self.lexicon = load_words(args.lexicon) if args.lexicon else None | |
self.idx_to_wrd = {} | |
checkpoint = torch.load(args.kenlm_model, map_location="cpu") | |
if "cfg" in checkpoint and checkpoint["cfg"] is not None: | |
lm_args = checkpoint["cfg"] | |
else: | |
lm_args = convert_namespace_to_omegaconf(checkpoint["args"]) | |
with open_dict(lm_args.task): | |
lm_args.task.data = osp.dirname(args.kenlm_model) | |
task = tasks.setup_task(lm_args.task) | |
model = task.build_model(lm_args.model) | |
model.load_state_dict(checkpoint["model"], strict=False) | |
self.trie = Trie(self.vocab_size, self.silence) | |
self.word_dict = task.dictionary | |
self.unk_word = self.word_dict.unk() | |
self.lm = FairseqLM(self.word_dict, model) | |
if self.lexicon: | |
start_state = self.lm.start(False) | |
for i, (word, spellings) in enumerate(self.lexicon.items()): | |
if self.unit_lm: | |
word_idx = i | |
self.idx_to_wrd[i] = word | |
score = 0 | |
else: | |
word_idx = self.word_dict.index(word) | |
_, score = self.lm.score(start_state, word_idx, no_cache=True) | |
for spelling in spellings: | |
spelling_idxs = [tgt_dict.index(token) for token in spelling] | |
assert ( | |
tgt_dict.unk() not in spelling_idxs | |
), f"{spelling} {spelling_idxs}" | |
self.trie.insert(spelling_idxs, word_idx, score) | |
self.trie.smear(SmearingMode.MAX) | |
self.decoder_opts = LexiconDecoderOptions( | |
beam_size=args.beam, | |
beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))), | |
beam_threshold=args.beam_threshold, | |
lm_weight=args.lm_weight, | |
word_score=args.word_score, | |
unk_score=args.unk_weight, | |
sil_score=args.sil_weight, | |
log_add=False, | |
criterion_type=self.criterion_type, | |
) | |
self.decoder = LexiconDecoder( | |
self.decoder_opts, | |
self.trie, | |
self.lm, | |
self.silence, | |
self.blank, | |
self.unk_word, | |
[], | |
self.unit_lm, | |
) | |
else: | |
assert args.unit_lm, "lexicon free decoding can only be done with a unit language model" | |
from flashlight.lib.text.decoder import LexiconFreeDecoder, LexiconFreeDecoderOptions | |
d = {w: [[w]] for w in tgt_dict.symbols} | |
self.word_dict = create_word_dict(d) | |
self.lm = KenLM(args.kenlm_model, self.word_dict) | |
self.decoder_opts = LexiconFreeDecoderOptions( | |
beam_size=args.beam, | |
beam_size_token=int(getattr(args, "beam_size_token", len(tgt_dict))), | |
beam_threshold=args.beam_threshold, | |
lm_weight=args.lm_weight, | |
sil_score=args.sil_weight, | |
log_add=False, | |
criterion_type=self.criterion_type, | |
) | |
self.decoder = LexiconFreeDecoder( | |
self.decoder_opts, self.lm, self.silence, self.blank, [] | |
) | |
def decode(self, emissions): | |
B, T, N = emissions.size() | |
hypos = [] | |
def idx_to_word(idx): | |
if self.unit_lm: | |
return self.idx_to_wrd[idx] | |
else: | |
return self.word_dict[idx] | |
def make_hypo(result): | |
hypo = {"tokens": self.get_tokens(result.tokens), "score": result.score} | |
if self.lexicon: | |
hypo["words"] = [idx_to_word(x) for x in result.words if x >= 0] | |
return hypo | |
for b in range(B): | |
emissions_ptr = emissions.data_ptr() + 4 * b * emissions.stride(0) | |
results = self.decoder.decode(emissions_ptr, T, N) | |
nbest_results = results[: self.nbest] | |
hypos.append([make_hypo(result) for result in nbest_results]) | |
self.lm.empty_cache() | |
return hypos | |